Advertisement

Journal of Electronic Materials

, Volume 32, Issue 6, pp 471–477 | Cite as

Wide and narrow bandgap semiconductors for power electronics: A new valuation

  • Jerry L. Hudgins
Regular Issue Paper

Abstract

An advantage for some wide bandgap materials that is often overlooked is that the thermal coefficient of expansion (CTE) is better matched to the ceramics in use for electronic-packaging technology. The optimal choice for unipolar devices is GaN and the associated material system of GaN/AlGaN. The future optimal choice for bipolar devices at all power levels is C (diamond). New expressions, ɛ c=1.73×105 (EG)2.5 for direct-gap and ɛ c=2.38×105 (EG)2 for indirect-gap semiconductors, relating the critical-electric field for breakdown in abrupt junctions to the material bandgap energy, and associated new expressions for specific on-resistance in power semiconductor devices is shown to further support the use of wide bandgap materials. Some low-voltage, power-electronics applications are shown to benefit by the use of Ge, C, and GaSb.

Key words

Power electronics wide bandgap narrow bandgap specific on-resistance gallium nitride diamond critical-electric field 

List of Symbols

CTE

Coefficient of thermal expansion (ppm/K or µm/m·K)

EG

Bandgap energy (eV)

ɛ(x)

Electric field as a function of position (V/cm)

ɛc

Critical-electric field (V/cm)

ɛ

Permittivity (F/cm)

ɛ

Relative permittivity

mo

Electron rest mass (kg)

mn

Electron density-of-states effective mass (kg)

ml

Longitudinal electron density-of-states effective mass (in mo)

mt

Transverse electron density-of-states effective mass (in mo)

mp

Hole density-of-states effective mass (kg)

mh

Heavy valence-band hole density-of-states effective mass (in mo)

ml

Light valence-band hole density-of-states effective mass (in mo)

μe

Electron conduction mobility (cm2/V·s)

μh

Hole-conduction mobility (cm2/V·s)

NB

Impurity-density concentration (cm−3)

ni

Intrinsic-carrier concentration (cm−3)

RONsp

Specific on-resistance (Ω·cm2)

σT

Thermal conductivity (W/m·K)

VB

Breakdown voltage (V)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.P. Chow and R. Tyagi, IEEE Trans. ED 41, 1481 (1994).CrossRefGoogle Scholar
  2. 2.
    M. Bhatnagar and B.J. Baliga, IEEE Trans. ED 40, 645 (1993).CrossRefGoogle Scholar
  3. 3.
    B.J. Baliga, IEEE EDL 10, 455 (1989).Google Scholar
  4. 4.
    J.L. Hudgins, G.S. Simin, and M.A. Khan, IEEE PESC Rec. (Columbia, SC: University of South Carolina Press, 2002), pp. 1747–1752.Google Scholar
  5. 5.
    L.I. Berger, Semiconductor Materials (New York: CRC Press, 1997), pp. 105–181.Google Scholar
  6. 6.
    M. Levinshtein, S. Rumyantsev, and M. Shur, eds., Semiconductor Parameters, Vol. 1 (River Edge, NJ: World Scientific, 1996), pp. 1–211.Google Scholar
  7. 7.
    C.M. Wolfe, N. Holonyak, and G.E. Stillman, Physical Properties of Semiconductors (Englewood Cliffs, NJ: Prentice Hall, 1989), p. 340.Google Scholar
  8. 8.
    R.C. Marshall, J.W. Faust, and C.E. Ryan, eds., Silicon Carbide—1973 (Columbia, SC: University of South Carolina Press, 1974), pp. 286–296.Google Scholar
  9. 9.
    B.J. Baliga, IEEE EDL 10, 455 (1989).Google Scholar
  10. 10.
    V.A. Dmitriev, K.G. Irvine, C.H. Carter, N.I. Kuznetsov, and E.V. Kalinina, Appl. Phys. Lett. 68, 229 (1996).CrossRefGoogle Scholar
  11. 11.
    M. Ruff, H. Mitlehener, and R. Helbig, IEEE Trans. ED 41, 1040 (1994).CrossRefGoogle Scholar
  12. 12.
    T.P. Chow and R. Tyagi, IEEE Trans. ED 41, 1481 (1994).CrossRefGoogle Scholar
  13. 13.
    M. Bhatnagar and B.J. Baliga, IEEE Trans. ED 40, 645 (1993).CrossRefGoogle Scholar
  14. 14.
    A.Q. Huang and B. Zhang, IEEE Trans. ED 48, 2535 (2001).CrossRefGoogle Scholar
  15. 15.
    M.E. Levinshtein, S.L. Rumyantsev, and M.S. Shur, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe (New York: John Wiley & Sons, Inc., 2001), pp. 1–185.Google Scholar
  16. 16.
    J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, H. Lu, W.J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).CrossRefGoogle Scholar
  17. 17.
    V.Y. Davydov et al., Phys. Status Solidi B 230, R4 (2002).Google Scholar
  18. 18.
    S.M. Sze and G. Gibbons, Appl. Phys. Lett. 8, 111 (1966).CrossRefGoogle Scholar
  19. 19.
    B.J. Baliga, J. Appl. Phys. 53, 1759 (1982).CrossRefGoogle Scholar
  20. 20.
    M.A. Khan, J.N. Kuznia, J.M. Van Hove, N. Pan, and N. Carter, Appl. Phys. Lett. 60, 3027 (1992).CrossRefGoogle Scholar
  21. 21.
    T. Sheppard, W.L. Pribble, D.T. Emerson, Z. Ring, R.P. Smith, S.T. Allen, and J.W. Palmour, Dev. Res. Conf. Dig. 37 (2000).Google Scholar
  22. 22.
    N.X. Nguyen, M. Micovic, W.-S. Wong, P. Hashimoto, L.M. McCray, P. Janke, and C. Nguyen, Electron. Lett. 36, 468 (2000).CrossRefGoogle Scholar
  23. 23.
    Y.-F. Wu, D. Kapolnek, J.P. Ibbetson, P. Parikh, B.P. Keller, and U.K. Mishra, IEEE Trans. ED 48, 586 (2001).CrossRefGoogle Scholar
  24. 24.
    W. Lu, J. Yang, M.A. Khan, and I. Adesida, IEEE Trans. ED 48, 581 (2001).CrossRefGoogle Scholar
  25. 25.
    M.A. Khan, X. Hu, G. Simin, A. Lunev, J. Yang, R. Gaska, and M.S. Shur, IEEE ED Lett. 21, 63 (2000).CrossRefGoogle Scholar
  26. 26.
    X. Hu, A. Koudymov, G. Simin, J. Yang, M.A. Khan, A. Tarakji, M.S. Shur, and R. Gaska, Appl. Phys. Lett. 79, 2832 (2001).CrossRefGoogle Scholar
  27. 27.
    G. Simin, X. Hu, N. Ilinskaya, A. Kumar, A. Koudymov, J. Zhang, M.A. Khan, R. Gaska, and M.S. Shur, Electron. Lett. 36, 2043 (2000).CrossRefGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2003

Authors and Affiliations

  • Jerry L. Hudgins
    • 1
  1. 1.Department of Electrical EngineeringUniversity of South CarolinaColumbia

Personalised recommendations