Journal of Electronic Materials

, Volume 32, Issue 7, pp 737–741 | Cite as

Luminescence study of ZnTe:Cr epilayers grown by molecular-beam epitaxy

  • Ming Luo
  • B. L. Vanmil
  • R. P. Tompkins
  • Y. Cui
  • T. Mounts
  • U. N. Roy
  • A. Burger
  • T. H. Myers
  • N. C. Giles
Special Issue Paper

Abstract

Incorporation of Cr into ZnTe epilayers grown by molecular-beam epitaxy (MBE) is reported. Photoluminescence (PL) using both continuous wave (CW) and pulsed-excitation sources is used to characterize the radiative efficiency of doped layers in the infrared region. The Cr2+ ions produce a broad emission band peaking in the 2–3 µm range, which is of potential use in tunable-laser devices. The optimum Cr concentration for achieving bright, room-temperature infrared emission was found to be in the range from low- to mid-1018 cm−3. Temperature-dependent luminescence studies were performed to determine thermal-quenching activation energies. Using a pulsed-laser operating at 1.9 µm, an investigation of emission lifetimes was made. The emission-decay curves for the Cr2+ recombination in ZnTe:Cr films could be described by a single exponential and were nearly independent of temperature from 80 K to 300 K. A room-temperature lifetime of ∼2.5 µsec in a ZnTe:Cr layer with [Cr] ∼1.4 × 1018 cm−3 compares favorably with values reported for bulk ZnTe:Cr.

Key words

ZnTe ZnTe:Cr molecular-beam epitaxy (MBE) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.D. DeLoach, R.H. Page, G.D. Wilke, S.A. Payne, and W.F. Krupke, IEEE J. Quant. Electron. 32, 885 (1996).CrossRefGoogle Scholar
  2. 2.
    T.J. Carrig, Laser Focus World 38, 75 (2002).Google Scholar
  3. 3.
    J.T. Vallin and G.D. Watkins, Solid State Commun. 9, 953 (1971).CrossRefGoogle Scholar
  4. 4.
    J.T. Vallin and G.D. Watkins, Phys. Rev. B 9, 2051 (1974).CrossRefGoogle Scholar
  5. 5.
    R.S. Title, Phys. Rev. 133, A1613 (1964).Google Scholar
  6. 6.
    J. Dziesiaty, P. Peka, M.U. Lehr, A. Klimakow, S. Muller, and H.-J. Schulz, Z. Phys. Chemie 201, 63 (1997).Google Scholar
  7. 7.
    M. Godlewski and M. Kaminska, J. Phys. C.: Solid State Phys. 13, 6537 (1980).CrossRefGoogle Scholar
  8. 8.
    B.L. VanMil, A.J. Ptak, L. Bai, L. Wang, M. Chirila, N.C. Giles, T.H. Myers, and L. Wang, J. Electron. Mater. 31, 770 (2002).Google Scholar
  9. 9.
    Y. Zhang, B.J. Skromme, and F.S. Turco-Sandroff, Phys. Rev. B 46, 3872 (1992).CrossRefGoogle Scholar
  10. 10.
    M. Kaminska, J.M. Baranowski, S.M. Uba, and J.T. Vallin, J. Phys. C: Solid State Phys. 12, 2197 (1979).CrossRefGoogle Scholar
  11. 11.
    A. Burger et al., J. Cryst. Growth 225, 249 (2001).CrossRefGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2003

Authors and Affiliations

  • Ming Luo
    • 1
  • B. L. Vanmil
    • 1
  • R. P. Tompkins
    • 1
  • Y. Cui
    • 2
  • T. Mounts
    • 2
  • U. N. Roy
    • 2
  • A. Burger
    • 2
  • T. H. Myers
    • 1
  • N. C. Giles
    • 1
  1. 1.Physics DepartmentWest Virginia UniversityMorgantown
  2. 2.Center for Photonic Materials and Devices, Physics DepartmentFisk UniversityNashville

Personalised recommendations