Journal of Electronic Materials

, Volume 31, Issue 7, pp 770–775 | Cite as

Heavy Cr doping of ZnSe by molecular beam epitaxy

  • B. L. Vanmil
  • A. J. Ptak
  • L. Bai
  • Lijun Wang
  • M. Chirila
  • N. C. Giles
  • T. H. Myers
  • Larry Wang
Special Issue Paper

Abstract

Epitaxial ZnSe layers were grown by molecular beam epitaxy (MBE) to study Cr incorporation with the long-term goal of demonstrating an alternate route for achieving transition-metal-doped lasers. Concentrations between 1015 atoms cm−3 and 4×1020 atoms cm−3 were achieved. Secondary ion-mass spectroscopy (SIMS) concentration profiles strongly suggest that surface segregation and accumulation of Cr occurs during growth. Photoluminescence (PL) measurements indicate Cr is incorporated in the optically active Cr2+ state up to levels of ∼1019 cm−3. Electron paramagnetic resonance (EPR) studies suggest that the Cr atoms exhibit collective magnetic behavior even at these levels. X-ray diffraction (XRD) and reflection high-energy electron diffraction (RHEED) indicate high structural quality is maintained for Cr incorporation for levels up to ∼1019 atoms cm−3.

Key words

ZnSe ZnSe:Cr molecular beam epitaxy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.D. DeLoach, R.H. Page, G.D. Wilke, S.A. Payne, and W.F. Krupke, IEEE J. Quantum Electron. 32, 885 (1996)CrossRefGoogle Scholar
  2. 2.
    L.A. Kulakova, N.V. Zotova, S.A. Karandashov, B.A. Matveev, B.T. Melekh, N.M. Stus, and G.N. Talalakin, Tech. Digest 216, CWL4 (1996).Google Scholar
  3. 3.
    R.U. Martinelli, D.Z. Garbuzov, H. Lee, P.K. York, R.J. Menna, J.C. Connoly, and S.Y. Narayan, Proc. SPIE 2382, 250 (1995).CrossRefGoogle Scholar
  4. 4.
    G.J. Wagner, T.J. Carrig, R.H. Page, K.I. Shaffers, J.-O. Ndap, X. Ma, and A. Burger, Opt. Lett. 24, 19 (1999).Google Scholar
  5. 5.
    R.S. Title, Phys. Rev. 133, A1613 (1964).Google Scholar
  6. 6.
    B.K. Rai, R.S. Katiyar, K.-T. Chen, and Arnold Burger, J. Appl. Phys. 83, 6011 (1998).CrossRefGoogle Scholar
  7. 7.
    Z. Yu, S.L. Buczkowski, N.C. Giles, and T.H. Myers, Appl. Phys. Lett. 69, 82 (1996).CrossRefGoogle Scholar
  8. 8.
    T.H. Myers, A.J. Ptak, B.L. VanMil, M. Moldovan, M.P. Nelson, J.M. Ribar, and C.T. Zugates, J. Vac. Sci. Technol. B 18, 2295 (2000).CrossRefGoogle Scholar
  9. 9.
    Evans Analytical Group, Charles Evans and Associates, Sunnyvale, CA.Google Scholar
  10. 10.
    C.I. Rablau, J.-O. Ndap, X. Ma, A. Burger, and N.C. Giles, J. Electron. Mater. 28, 678 (1999).CrossRefGoogle Scholar
  11. 11.
    M. Knudsen, Ann. Phys. (Leipzig) 4, 999 (1909).Google Scholar
  12. 12.
    N.F. Ramsey, Molecular Beams (London: Oxford University Press, 1956).Google Scholar
  13. 13.
    C.E.C. Wood, D. DeSimone, K. Singer, and G.W. Wicks, J. Appl. Phys. 53, 4230 (1982).CrossRefGoogle Scholar
  14. 14.
    D. DeSimone, C.E.C. Wood, and C.A. Evans, Jr., J. Appl. Phys. 53, 4938 (1982).CrossRefGoogle Scholar
  15. 15.
    T.J. Carrig, G.J. Wagner, A. Sennaroglu, J.Y. Jeong, and C.R. Polluck, Opt. Lett. 25, 168 (2000).Google Scholar
  16. 16.
    M.U. Lehr, B. Litzenburger, J. Kreiss, U.W. Pohl, H.R. Selber, H.-J. Schulz, A. Klimakow, and L. Worschech, J. Phys. Condens. Matter 9, 753 (1997).CrossRefGoogle Scholar
  17. 17.
    G. Grebe, G. Roussos, and H.-J. Schulz, J. Phys. C: Solid State Phys. 9, 4511 (1976).CrossRefGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2002

Authors and Affiliations

  • B. L. Vanmil
    • 1
  • A. J. Ptak
    • 1
  • L. Bai
    • 1
  • Lijun Wang
    • 1
  • M. Chirila
    • 1
  • N. C. Giles
    • 1
  • T. H. Myers
    • 1
  • Larry Wang
    • 2
  1. 1.Department of PhysicsWest Virginia UniversityMorgantown
  2. 2.Evans Analytical Group, Charles Evans and AssociatesSunnyvale

Personalised recommendations