Skip to main content
Log in

Under bump metallurgy study for Pb-free bumping

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The demand for Pb-free and high-density interconnection technology is rapidly growing. The electroplating-bumping method is a good approach to meet finepitch requirements, especially for high-volume production, because to volume change of patterned-solder bumps during reflow is not so large compared with the stencil-printing method. This paper proposes a Sn/3.5 Ag Pb-free electroplating-bumping process for high-density Pb-free interconnects. It was found that a plated Sn/Ag bump becomes Sn/Ag/Cu by reflowing when Cu containing under bump metallurgy (UBM) is used. Another important issue for future flip-chip interconnects is to optimize the UBM system for high-density and Pb-free solder bumps. In this work, four UBM systems, sputtered TiW 0.2 µm/Cu 0.3 µm/electroplated Cu 5 µm, sputtered Cr 0.15 µm/Cr-Cu 0.3 µm/Cu 0.8 µm, sputtered NiV 0.2 µm/Cu 0.8 µm, and sputtered TiW 0.2 µm/NiV 0.8 µm, were investigated for interfacial reaction with electroplated Pb/63Sn and Sn/3.5Ag solder bumps. Both Cu-Sn and Ni-Sn intermetallic compound (IMC) growth were observed to spall-off from the UBM/solder interface when the solder-wettable layer is consumed during a liquid-state “reflow” process. This IMC-spalling mechanism differed depending on the barrier layer material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Cotte, M. Datta, T.E. Dinan, and R.V. Shenoy, U.S. patent 5,800,726 (1998).

    Google Scholar 

  2. H. Reichl and J. Wolf (Paper presented at the HDI Conf., Santa Clara, CA, 2001).

  3. A.Z. Mirac, Proc. Electronics Goes Green 2000+ (Berlin: Fraunhofer IZM, 2000), pp. 31–36.

    Google Scholar 

  4. L. Dietrich, J. Wolf, O. Ehrmann, and H. Reichl, Proc. ISEPT (Beijing: 1998), pp. 17–20.

  5. S.-Y. Jang and K.-W. Paik, Solder. Surf. Mt. Technol. 10, 29 (1998).

    Article  CAS  Google Scholar 

  6. S.-Y. Jang, J. Wolf, O. Ehrmann, H. Gloor, H. Reichl, and K.-W. Paik (Paper presented at the Electronic Components and Technology Conf., Orlando, FL, 2001).

  7. H.M. Choi (Ph.D. thesis, KAIST, 1999).

  8. F.M. d’Heule and J.M.E. Harper, Thin Solid Films 171, 81 (1989).

    Article  Google Scholar 

  9. M. Datta, R.V. Shenoy, C. Jahnes, P.C. Andricacos, J. Horkans, J.O. Dukovic, L.T. Romankiw, J. Roeder, H. Deligianni, H. Nye, B. Agarwala, H.M. Tong, and P. Totta, J. Electrochem. Soc. 142, 3779 (1995).

    Article  CAS  Google Scholar 

  10. E. Suhir, J. Appl. Mech. 55, 143 (1988).

    Article  Google Scholar 

  11. G. Stoney, Proc. R. Soc. London, Ser. A82, 172 (1909).

    Google Scholar 

  12. D.L. Chambers, K.A. Taylor, C.T. Wan, and G.T. Susi, J. Vac. Sci. Technol. A9, 1104 (1991).

    Google Scholar 

  13. D.R. Lide, Handbook of Chemistry and Physics, 72nd ed. (Boca Raton, FL: CRC Press, 1992), pp. 8–17.

    Google Scholar 

  14. E. Klokholm and B.S. Berry, J. Electrochem. Soc. 115, 823 (1968).

    Article  Google Scholar 

  15. D.S. Patterson, P. Elenius, and J.A. Leal, Proc. Inter Pack (1997).

  16. B.J. Lee, N.M. Hwang, and H.M. Lee, Acta Mater. 45, 1867 (1997).

    Article  CAS  Google Scholar 

  17. S. Bader, W. Gust, and H. Hieber, Acta Mater. 43, 329 (1995).

    CAS  Google Scholar 

  18. Z. Mei, A.J. Sunwoo, and J.W. Morris, Jr., Metal. Trans. A, 23A, 857 (1992).

    CAS  Google Scholar 

  19. D.R. Flanders, E.G. Jacobs, and R.F. Pinizzotto, J. Electron. Mater. 26, 883 (1997).

    CAS  Google Scholar 

  20. K.N. Tu and K. Zeng, Mater. Sci. Eng. R 34, 1 (2001).

    Article  Google Scholar 

  21. R.J. Fields, S.R. Low III, and G.K. Lucey, Met. Sci. Joining, 165 (1992).

  22. W.K. Choi and H.M. Lee, J. Electron. Mater. 29, 1207 (2000).

    Article  CAS  Google Scholar 

  23. H.K. Kim and K.N. Tu, Phys. Rev. B, 53, 16027 (1996).

    Article  CAS  Google Scholar 

  24. C.Y. Liu, H.K. Kim, K.N. Tu, and P.A. Totta, Appl. Phys. Lett. 69, 4014 (1996).

    Article  Google Scholar 

  25. B.S. Berry and I. Ames, IBM J. Res. Dev. 13, 286 (1969).

    Article  CAS  Google Scholar 

  26. P.A. Totta and R.P. Sopher, IBM J. Res. Dev. 13, 226 (1969).

    CAS  Google Scholar 

  27. T. Liu, D. Kim, D. Leung, M.A. Korhenen, and C.-Y. Li, Scripta Mater. 35, 65 (1996).

    Article  Google Scholar 

  28. G.Z. Pan, A.A. Liu, H.K. Kim, K.N. Tu, and P. Totta, Appl. Phys. Lett. 71, 2946 (1997).

    Article  CAS  Google Scholar 

  29. S.-Y. Jang, J. Wolf, O. Ehrmann, H. Gloor, H. Reichl, and K.-W. Paik, IEEE Trans. Comp. Packag. Technol., in press.

  30. H.P.R. Rederikse, R.J. Fields, and A. Feldman, J. Appl. Phys. 72, 2879 (1992).

    Article  Google Scholar 

  31. R.J.K. Wassink, Soldering in Electronics, 2nd ed. (Ayr, Scotland: Electrochemical Publication Ltd., 1989), p. 103.

    Google Scholar 

  32. P. Elenius, J. Leal, J. Ney, D. Stepniak, and S. Yeh, Proc. Electronic Components and Technology Conf. (Piscataway, NJ: IEEE, 1999), pp. 260–65.

    Google Scholar 

  33. C.Y. Liu, K.N. Tu, T.T. Sheng, C.H. Tung, D.R. Frear, and P. Elenius, J. App. Phys. 87, 2, 750 (2000).

    Google Scholar 

  34. S.-Y. Jang and K.-W. Paik, IEEE Trans. Electron. Packag. Manuf., 24, 269 (2001).

    Article  CAS  Google Scholar 

  35. S. Honma, K. Tateyama, H. Yamada, and M. Saito, Proc. ISHM (1996), pp. 87–92.

  36. H. Ezawwa, M. Miyata, and S. Hronoma, Proc. of Electronic Components and Technology Conf. (Piscataway, NJ: IEEE, 2000), pp. 1095–1100.

    Google Scholar 

  37. W.K. Choi, S.-Y. Jang, J.H. Kim, K.-W. Paik, and H.M. Lee, J. Mater. Res., 17, 597 (2002).

    CAS  Google Scholar 

  38. A.A. Liu, H.K. Kim, K.N. Tu, and P.A. Totta, Appl. Phys. Lett. 80, 2774 (1996).

    CAS  Google Scholar 

  39. G. Ghosh, Acta Mater. 49, 2609 (2001).

    Article  CAS  Google Scholar 

  40. K. Zeng, V. Vuorinen, and J.K. Kivilahti, Proc. of Electronic Components and Technology Conf. (Piscataway, NJ: IEEE, 2001), pp. 693–698.

    Google Scholar 

  41. J.W. Jang, D.R. Frear, T.Y. Lee, and K.N. Tu, J. Appl. Phys. 88, 6359 (2000).

    Article  CAS  Google Scholar 

  42. I. Shonhji, F. Mori, and K. Kobarashi, Mater. Trans.-JIM 42, 790 (2001).

    Article  Google Scholar 

  43. D.R. Frear, J.W. Jang, J.K. Lin, and C. Zhang, JOM 53 (2001), p. 28.

    CAS  Google Scholar 

  44. S.K. Kang, R.S. Rai, and S. Purushothaman, J. Electron. Mater. 25, 7 (1996).

    Google Scholar 

  45. S.-W. Chen and Y.-W. Yen, J. Electron. Mater. 28, 11 (1999).

    Google Scholar 

  46. K. Zeng and J.K. Kivilahti, J. Electron. Mater. 30, 1 (2001).

    Google Scholar 

  47. K. Suganuma, H.-H. Huh, K. Kim, H. Nakase, Y. Nakamura, and H. Nakase, Mater. Trans.-JIM 42, 286 (2001).

    Article  CAS  Google Scholar 

  48. W. Yang, R.W. Messler, and L.E. Felton, J. Electron. Mater. 23, 765 (1994).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, SY., Wolf, J. & Paik, KW. Under bump metallurgy study for Pb-free bumping. J. Electron. Mater. 31, 478–487 (2002). https://doi.org/10.1007/s11664-002-0103-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-002-0103-x

Key words

Navigation