Skip to main content
Log in

Transmission electron microscopy characterization of GaN nanowires

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Transmission electron microscopy (TEM) was applied to study GaN nanowires grown on carbon nanotube surfaces by chemical reaction between Ga2O and NH3 gas in a conventional furnace. These wires grew in two crystallographic directions, 〈2\(\underline {11} \)0〉 and 〈01\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{1} \)0〉 (fast growth directions of GaN), in the form of whiskers covered by small elongated GaN platelets. The morphology of these platelets is similar to that observed during the growth of single crystals from a Ga melt at high temperatures under high nitrogen pressure. It is thought that growth of nanowires in two different crystallographic directions and the arrangement of the platelets to the central whisker may be influenced by the presence of Ga2O3 (based on the observation of the energy dispersive x-ray spectra), the interplanar spacings in the wire, and the presence of defects on the interface between the central part of the nanowire and the platelets surrounding it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature (London) 354, 56 (1991).

    Article  CAS  Google Scholar 

  2. S. Nakamura, N. Iwasa, M. Senoh, and T. Mukui, Jpn. J. Appl. Phs. 31, 1258 (1992).

    Article  CAS  Google Scholar 

  3. S. Nakamura (Paper Plenary 1 presented at the 24th Int. Symp. on Compound Semiconductors, San Diego, CA, September 8–11, 1997).

  4. H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Inst. Phys. Conf. Ser. 106, 725 (1998).

    Google Scholar 

  5. U.K. Mishra, Y.F. Wu, B.P. Keller, S. Keller, and S.P. Denbars, IEEE Trans. Microwave Theory Tech. 46, 756 (1998).

    Article  CAS  Google Scholar 

  6. W. Han, S. Fan, Q. Li, and Y. Hu, Science 277, 1287 (1997).

    Article  CAS  Google Scholar 

  7. G.S. Cheng, L.D. Zhang, Y. Zhu, G.T. Fei, L. Li, C.M. Mo, and Y.Q. Mao, Appl. Phs. Lett. 75, 2455 (1998).

    Article  Google Scholar 

  8. W. Han, P. Redlich, F. Ernst, and M. Ruhle, Appl. Phys. Lett. 76, 652 (1999).

    Article  Google Scholar 

  9. J. Zhu and S. Fan, J. Mater. Res. 14, 1175 (1999).

    CAS  Google Scholar 

  10. I. Grzegory, J. Jun, M. Bockowski, S. Krukowski, M. Wroblewski, B. Lucznik, and S. Porowski, J. Phys. Chem. Solids 56, 639 (1995).

    Article  CAS  Google Scholar 

  11. Z. Liliental-Weber, M. Benamara, J. Washburn, I. Grzegory, and S. Porowski, Mater. Res. Soc. Symp. Proc. 572, 363 (1999).

    CAS  Google Scholar 

  12. M. He, I. Minus, P. Zhou, S.N. Mohammed, J.B. Halpern, R. Jakobs, W.L. Sarney, L. Salamanca-Riba, and R.D. Vispute, Appl. Phys. Lett. 77, 3731 (2000).

    Article  CAS  Google Scholar 

  13. G.A. Bootsma and H.J. Gassen, J. Cryst. Growth 10, 223 (1971).

    Article  CAS  Google Scholar 

  14. S. Otoishi and Y. Tange, J. Crst. Growth 200, 467 (2000).

    Article  Google Scholar 

  15. T. Kaneko, J. Cryst. Growth 63, 239 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liliental-Weber, Z., Gao, Y.H. & Bando, Y. Transmission electron microscopy characterization of GaN nanowires. J. Electron. Mater. 31, 391–394 (2002). https://doi.org/10.1007/s11664-002-0089-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-002-0089-4

Key words

Navigation