Skip to main content
Log in

Ohmic contact formation on inductively coupled plasma etched 4H-silicon carbide

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report on the investigation of ohmic contact formation using sputtered titanium-tungsten contacts on an inductively coupled plasma (ICP) etch-damaged 4H-SiC surface. Transfer length method (TLM) measurements were performed to characterize how ICP-etch damage affects the performance of ohmic contacts to silicon carbide. In order to recover etch damage, high-temperature oxidation (1250°C for 1 h) was evaluated for one of the samples. Some of the etch damage was recovered, but it did not fully recover the etch damage for the sample etched with medium platen power (60 W). From our TLM measurements, the specific contact resistance (ρ C of sputtered titanium tungsten on highly doped n+-type 4H-SiC epilayers with a doping of 1.1×1019 cm−3 for the unetched reference sample, 30-W etched, and 60-W etched with and without sacrificial oxidation was as low as 3.8×10−5 Ωcm2, 3.3×10−5 Ωcm2, 2.3×10−4 Ωcm2, and 1.3×10−3 Ωcm2, respectively. We found that the low-power (30 W) ICP-etching process did not affect the formation of ohmic contacts, and we did not observe any difference between the unetched and the 30-W etched sample from our TLM measurements, having the same value of the ρ C. However, medium-platen-power (60 W) ICP etching showed significant influence on the ohmic contact formation. We found that the specific contact resistance is highly related to the surface roughness and quality of the metals, and the lower, specific contact resistance is due to smoother and denser ohmic contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Trew, Phys. Status Solidi A162, 409 (1997).

    Google Scholar 

  2. A.A. Yassen, C.A. Zorman, and M. Mehregany, J. Microelectromech. Sys. 8, 237 (1999).

    Article  Google Scholar 

  3. W.S. Pan and A.J. Stekl, J. Electrochem. Soc. 137, 212 (1990).

    Article  CAS  Google Scholar 

  4. J.R. Flemish, K. Xie, and G.F. McLane, Mater. Res. Soc. Symp. Proc. 421, 153 (1996).

    CAS  Google Scholar 

  5. J.J. Wang, E.S. Lambers, S.J. Pearton, M. Östling, C.-M. Zetterling, J.M. Grow, F. Ren, and R.J. Shul, J. Vac. Sci. Technol. A16, 2204 (1998).

    Google Scholar 

  6. F.A. Khan and I. Adesida, Appl. Phys. Lett. 75, 2268 (1999).

    Article  CAS  Google Scholar 

  7. E. Danielson, C.-M. Zetterling, M. Östling, S.-K. Lee, K. Linthicum, D.B. Thomson, O.H. Nam, and R.F. Davis, Mater. Sci. Forum. 338–342, 1049 (2000).

    Article  Google Scholar 

  8. E. Danielson, S.-K. Lee, C.-M. Zetterling, and M. Östling, J. Electron. Mater. 30, 247 (2001).

    Google Scholar 

  9. P. Leerungnawarat, K.P. Lee, S.J. Pearton, F. Ren, and S.N. Chu, J. Electron. Mater. 30, 202 (2001).

    CAS  Google Scholar 

  10. F.A. Khan, B. Roof, L. Zhou, and I. Adesida, J. Electron. Mater. 30, 212 (2001).

    CAS  Google Scholar 

  11. S.M. Sze, Physics of Semiconductor Devices, 2nd ed. (New York: John Wiley & Sons. Inc., 1981), pp. 245–46.

    Google Scholar 

  12. L.M. Porter and R.F. Davis, Mater. Sci. Eng. B34, 83 (1995).

    Article  CAS  Google Scholar 

  13. V. Hoffman, Solid State Technol. 26, 119 (1983).

    CAS  Google Scholar 

  14. C.M. Winter and P. Pizzo, IEEE Int. Electron Manufacturing Technology Symp. Proc. (Baltimore, MD: IEEE, 1992), p. 124.

    Book  Google Scholar 

  15. J. Crofton, J.R. Williams, M.J. Bozack, and P.A. Barnes, Inst. Phys. Conf. Ser. 137, 719 (1994).

    CAS  Google Scholar 

  16. S.-K. Lee, C.-M. Zetterling, and M. Östling, Mater. Res. Soc. Symp. Proc. 640, H7.2 (2000).

    Google Scholar 

  17. S.-K. Lee, C.-M. Zetterling, and M. Östling, J. Appl. Phys. 87, 8039 (2000).

    Article  CAS  Google Scholar 

  18. A. Elshabini and F.D. Barlow, Thin Film Technology Handbook (New York: McGraw-Hill, 1997), pp. 42–44.

    Google Scholar 

  19. CREE Research Inc., Durham, NC.

  20. V. Khemka, T.P. Chow, and R.J. Gutman, J. Electron. Mater. 27, 1128 (1998).

    CAS  Google Scholar 

  21. S.N. Ganguli and D. Berk, J. Vac. Sci. Technol. A6, 3068 (1988).

    Google Scholar 

  22. W. Schockley, Rep. No. AFAL-TDR-64-207 (1963).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.K., Koo, S.M., Zetterling, C.M. et al. Ohmic contact formation on inductively coupled plasma etched 4H-silicon carbide. J. Electron. Mater. 31, 340–345 (2002). https://doi.org/10.1007/s11664-002-0079-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-002-0079-6

Key words

Navigation