Skip to main content
Log in

Recent developments in rapid thermal processing

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Rapid thermal annealing (RTA) with a short dwell time at maximum temperature is used with ion implantation to form shallow junctions and polycrystalline-Si gate electrodes in complementary, metal-oxide semiconductor (CMOS) Si processing. Wafers are heated by electric lamps or steady heat sources with rapid wafer transfer. Advanced methods use “spike anneals,” wherein high-temperature ramp rates are used for both heating and cooling while also minimizing the dwell time at peak temperature to nominally zero. The fast thermal cycles are required to reduce the undesirable effects of transient-enhanced diffusion (TED) and thermal deactivation of the dopants. Because junction profiles are sensitive to annealing temperature, the challenge in spike annealing is to maintain temperature uniformity across the wafer and repeatability from wafer to wafer. Multiple lamp systems use arrayed temperature sensors for individual control zones. Other methods rely on process chambers that are designed for uniform wafer heating. Generally, sophisticated techniques for accurate temperature measurement and control by emissivity-compensated infrared pyrometry are required because processed Si wafers exhibit appreciable variation in emissivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Mattson, P. Timans, S.-P. Tay, D.J. Devine, and J. Kim, “The Future of RTP, a Technology That Can Change the IC FAB Industry,” 9th Int. Conf. on Advanced Thermal Processing of Semiconductors—RTP 2001, ed. D.P. DeWitt, J. Gelpey, B. Lojek, and Z. Nenyei (Piscataway, NJ: IEEE, 2001), pp. 13–17.

    Google Scholar 

  2. International Technology Roadmap for Semiconductors (San Jose, CA: Semiconductor Industry Association, 2001), http://public.itrs.net.

  3. M. Ameen and J. Hebb, Solid State Technol. 44, 77 (2001).

    CAS  Google Scholar 

  4. H. Park et al., Very Large Scale Integration Symp. Technical Digest 0-7803-7312-X/02 (Piscataway, NJ: IEEE, 2002).

    Google Scholar 

  5. K. Mori, A. Duong, and W.F. Richardson, IEEE Trans. Electron. Dev. 49, 61 (2002).

    Article  CAS  Google Scholar 

  6. J.M. Hergenrother et al., International Electron Devices Meeting 2001 (Piscataway, NJ: IEEE, 2001), pp. 3.1.1–3.1.4.

    Google Scholar 

  7. D. Hisamoto, W.C. Lee, and J. Kedzierski, IEEE Trans. Electron. Dev. 47, 2320 (2000).

    Article  CAS  Google Scholar 

  8. M. Takahashi, T. Ohno, and Y. Sakakibara, IEEE Trans. Electron. Dev. 48, 1380 (2001).

    Article  Google Scholar 

  9. H.J. Huang, K.M. Chen, and T.Y. Huang, IEEE Trans. Electron. Dev. 48, 1627 (2001).

    Article  CAS  Google Scholar 

  10. S.C. Jain, Germanium-Silicon Strained Layers and Heterostructures (New York: Academic Press, 1994).

    Google Scholar 

  11. “Germanium Silicon: Physics and Materials,” Semiconductors and Semimetals, ed. R. Hull and J.C. Bean (New York: Academic Press, 1999).

    Google Scholar 

  12. G. Theodorou, C. Tserbak, and N.D. Vlachos, J. Appl. Phys. 78, 3600 (1995).

    Article  CAS  Google Scholar 

  13. F. Lacroix, E. Bernier, and M.H. Ayliffe, Appl. Optics 41, 1541 (2002).

    Google Scholar 

  14. R.K. Sharma, A. Kumar, and J.M. Anthony, JOM, 53, 53 (2001).

    CAS  Google Scholar 

  15. A.T. Fiory, “Rapid Thermal Annealing,” Encyclopedia of Materials: Science and Technology, ed. K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, and S. Mahajan (Amsterdam: Permagon, Elsevier Science, 2001).

    Google Scholar 

  16. S. Saito, S. Shishiguchi, A. Mineji, and T. Matsuda, Mater. Res. Soc. Symp. Proc. 532, 3 (1998).

    CAS  Google Scholar 

  17. Y. Wu, G. Lucovsky, and Y.M. Lee, IEEE Trans. Electron. Dev. 47, 1361 (2000).

    Article  CAS  Google Scholar 

  18. J.P. Hebb (Ph.D. thesis, Massachusetts Institute of Technology, 1997).

  19. H. Rogne and H. Ahmed, Mater. Res. Soc. Symp. Proc. 525, 27 (1998).

    CAS  Google Scholar 

  20. J. Hebb and A. Shajii, Advances in Rapid Thermal Processing, ed. F. Roozeboom, J.C. Gelpey, M.C. Öztürk, and J. Nakos (Pennington, NJ: Electrochemical Society, 1999), pp. 375–382.

    Google Scholar 

  21. V.I. Kuznetsov, A.B. Storm, G.J. Snijders, C. de Ridder, T.A.M. Ruijl, J.C.G. v.d. Sanden, and E.H.A. Granneman, Advances in Rapid Thermal Processing (Pennington, NJ: Electrochemical Society, 1999), pp. 401–412.

    Google Scholar 

  22. W.K. Mammel, U.S. patent 3,627,590 (Dec. 14, 1971).

  23. B. Peuse, G. Miner, M. Yam, and C. Elia, Mater. Res. Soc. Symp. Proc. 525, 71 (1998).

    CAS  Google Scholar 

  24. C. Schietinger, B. Adams, and C. Yarling, Mater. Res. Soc. Symp. Proc. 224, 23 (1991).

    Google Scholar 

  25. B. Nguyenphu and A.T. Fiory, J. Electron. Mater. 28, 1376 (1999).

    CAS  Google Scholar 

  26. M. Hauf, H. Balthasar, C. Merkl, S. Muller, and C. Striebel, Advances in Rapid Thermal Processing, ed. F. Roozeboom, J.C. Gelpey, M.C. Öztürk, and J. Nakos (Pennington, NJ: Electrochemical Society, 1999), pp. 383–390.

    Google Scholar 

  27. D.A. Camm and B. Lojek, Proc. 2nd Int. Rapid Thermal Processing Conf., RTP ’94, ed. R.B. Fair and B. Lojek (Round Rock, TX: RTP Conference, 1994), pp. 259–262.

  28. C.S. Rafferty, G.H. Gilmer, M. Jaraiz, D.J. Eaglesham, and H.-J. Gossmann, Appl. Phys. Lett. 68, 2395 (1996).

    Article  CAS  Google Scholar 

  29. A.T. Fiory, K.K. Bourdelle, and P.K. Roy, Appl. Phys. Lett. 78, 1071 (2001).

    Article  CAS  Google Scholar 

  30. A. Kamgar, “Rapid Thermal Processing of Silicon,” Submicron Integrated Circuits, ed. R.K. Watts (New York: Wiley Interscience, 1989); R.B. Fair, ed., Rapid Thermal Processing: Science and Technology (New York: Academic Press, 1993); F. Roozeboom, ed., Advances in Rapid Thermal and Integrated Processing (Dordrecht, The Netherlands: Kluwer Academic Publishers, 1996), pp. 434–469.

    Google Scholar 

  31. B.R. Appleton and G.K. Celler, eds., Laser and Electron Beam Interactions with Solids (New York: Elsevier North Holland, 1982).

    Google Scholar 

  32. R.L. Cohen, J.S. Williams, L.C. Feldman, and K.W. West, Appl. Phys. Lett. 33, 751 (1978).

    Article  CAS  Google Scholar 

  33. T. Ito et al., Extended Abstracts 2002 Int. Conf. on Solid State Devices and Materials (Tokyo, 2001), pp. 182–183.

  34. J. Gelpey, K. Elliott, D. Camm, S. McCoy, J. Ross, D.F. Downey, and E.A. Arevalo (Paper presented at 201st Electrochemical Society Meeting, Philadelphia, PA, Symp. Q1, Rapid Thermal and Other Short-Time Processing Technologies III, May 12–17, 2002).

  35. R. Lüdemann, D. Diro, S. Peters, D.M. Huljic, and R. Preu, 11th Workshop on Crystalline Silicon Solar Cell Materials and Processes, ed. Bhushan Sopori (Golden, CO: National Renewable Energy Laboratory) NREL/BK-520-30838, pp. 114–121; S. Noel, H. Lautenschlager, and J.C. Muller, Semicond. Sci. Technol. 15, 322 (2000).

  36. P. Vandenabeele, K. Maex, and R. DeKeersmaecker, Mater. Res. Soc. Symp. Proc. 146, 149 (1989).

    CAS  Google Scholar 

  37. Z. Nenyei (Paper presented at 201st Electrochemical Society Meeting, Symp. Q1, Rapid Thermal and Other Short-Time Processing Technologies III, Philadelphia, PA, 12–17 May 2002).

  38. E. Granneman, C. Laviron, A. Halimaoui, V. Kuznetsov, R. Grisel, and H. Terhorst (Paper presented at 201st Electrochemical Society Meeting, Symp. Q1, Rapid Thermal Other Short-Time Processing Technologies III, Philadelphia, PA, 12–17 May 2002).

  39. B. Lojek, M. Whiteman, and R. Ahrenkiel, 9th Int. Conf. on Advanced Thermal Processing of Semiconductors—RTP 2001, ed. D.P. DeWitt, J. Gelpey, B. Lojek, and Z. Nenyei (Piscataway, NJ: IEEE, 2001), pp. 125–131.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiory, A.T. Recent developments in rapid thermal processing. J. Electron. Mater. 31, 981–987 (2002). https://doi.org/10.1007/s11664-002-0031-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-002-0031-9

Key words

Navigation