Skip to main content
Log in

High creep resistance tin-based alloys for soldering applications

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Tin-antimony and tin-indium-antimony alloys made using relatively simple processing steps are discussed as potential creep-resistant, lead-free solders. The intermetallic SbSn forms a very advantageous distribution of high aspectratio whiskers, providing a significant composite strengthening effect that is relatively unaffected by aging at temperatures below 100°C. The intermetallic InSb is even more effective than SbSn per volume fraction. Evidently, strong interactions between dislocations and InSb particles are the origin of the creep-rate reduction. Compared to other potential creep-resistant solder alloys, the creep properties of the Sn-Sb and Sn-In-Sb alloys compare favorably, particularly the high volume-fraction Sn-Sb alloys. It is suggested that even better creep resistance could be achieved in alloys containing distributions of both InSb particles and SbSn whiskers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Mavoori, JOM 52 (6), 29 (2000).

    Google Scholar 

  2. H. Mavoori and S. Jin, JOM 52 (6), 30 (2000).

    CAS  Google Scholar 

  3. J. Rösler, G. Bao, and A.G. Evans, Acta Metall. Mater. 39, 2733 (1991).

    Article  Google Scholar 

  4. G. Bao, J.W. Hutchinson, and R.M. McMeeking, Acta Metall. Mater. 39, 1871 (1991).

    Article  Google Scholar 

  5. J.L. Marshall, J. Calderon, J. Sees, G. Lucey, and J.S. Hwang, IEEE Trans. Comp., Hybrids, Manuf. Technol. 14, 698 (1991).

    Article  CAS  Google Scholar 

  6. M. McCormack, S. Jin, and G.W. Kammlott, IEEE Trans. Comp., Packag., Manuf. Technol. Part A, 17, 452 (1994).

    Article  CAS  Google Scholar 

  7. F. Guo, J.P. Lucas, and K.N. Subramanian, J. Mater. Sci.: Mater. Electron. 12, 27 (2001).

    Article  CAS  Google Scholar 

  8. R.J. McCabe (Ph.D. thesis, Northwestern University, 2000).

  9. R.J. McCabe and M.E. Fine, Metall. Mater. Trans. A 33A, 1531 (2002).

    Article  CAS  Google Scholar 

  10. Thermo-calc, ver. L. (Stockholm, Sweden: Foundation for Computational Thermodynamics, 1996).

  11. G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd ed. (Cambridge, MA: MIT Press, 1971).

    Google Scholar 

  12. R.K. Mahidhara, S.M.L. Sastry, I. Turlik, and K.L Murty, Scripta Metall. Mater. 31, 1145 (1994).

    Article  CAS  Google Scholar 

  13. M.D. Mathew, S. Movva, H. Yang, and K.L. Murty, Creep Behavior of Advanced Materials for the 21st Century, eds. R.S. Mishra, A.K. Mukherjee, and K. Linga Murty (Warrendale, PA: TMS, 1999), pp. 51–59.

    Google Scholar 

  14. R.J. McCabe and M.E. Fine, Metall. Mater. Trans. A 33A, 575 (2002).

    Google Scholar 

  15. E. Marquis and D. Dunand, Scripta Mater. 47, 503 (2002).

    Article  CAS  Google Scholar 

  16. R. Darveaux and K. Banerji, IEEE Trans. Comp., Hybrids, Manuf. Technol. 15, 1013 (1992).

    Article  CAS  Google Scholar 

  17. H. Mavoori, S. Vaynman, J. Chin, B. Moran, L. Keer, and M.E. Fine, Mater. Res. Soc. Symp. Proc. eds. R.C. Sundahl, K.-T. Tu, K.A. Jackson, P. Borgesen (Pittsburgh, PA: Mater. Res. Soc., 1995), pp. 161–175.

    Google Scholar 

  18. J.S. Hwang, Z. Guo, and G. Lucey, Surface Mount International, (Pittsburgh, PA: Mater. Res. Soc., 1993), pp. 662–676.

    Google Scholar 

  19. B. Chandran, W.F. Schmidt, M.H. Gordon, and R. Djkaria (Paper presented at 1996 ASME Int. Mechanical Engineering Congr. Expo., Atlanta, GA, 17–22 November 1996).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mccabe, R.J., Fine, M.E. High creep resistance tin-based alloys for soldering applications. J. Electron. Mater. 31, 1276–1282 (2002). https://doi.org/10.1007/s11664-002-0021-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-002-0021-y

Key words

Navigation