Skip to main content
Log in

Nucleation kinetics of Cu6Sn5 by reaction of molten tin with a copper substrate

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The nucleation kinetics of the η-phase (Cu6Sn5) intermetallic compound were investigated by hot dipping copper coupons in molten tin for 1 and 2 sec, at temperatures varying from 240°C to 300°C. In the scanning electron microscope (SEM), the Cu6Sn5 phase appears as small, rounded bumps of varying sizes, jutting out from the surface of the copper. The experimentally determined nucleation curves show the typical inverse C type behavior with a maximum nucleation rate occurring at an intermediate temperature. The role of surface finish on nucleation rate was also studied. Experimentally determined “effective nucleation rate” per unit area is presented and compared with theoretical predictions over the temperature range investigated. Relevant nucleation models and nucleation energetic parameters are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Bartels, J.W. Morris, Jr., G. Dalke, and W. Gust, J. Electron. Mater. 23, 787 (1994).

    CAS  Google Scholar 

  2. S. Bader, W. Gust, and H. Heiber, Acta Metall. Mater. 43, 329 (1995).

    CAS  Google Scholar 

  3. A.C.K. So and Y.C. Chan, IEEE Trans., Comp., Packag., Manuf. Technol. 19, 661 (1996).

    Article  CAS  Google Scholar 

  4. H.K. Kim, H.K. Liou, and K.N. Tu, Appl. Phys. Lett. 66, 2337 (1995).

    Article  CAS  Google Scholar 

  5. H.K. Kim and K.N. Tu, Phys. Rev. B 53, 16027 (1996).

    Article  CAS  Google Scholar 

  6. S.K. Kang, R.S. Rai, and S. Purushothaman, J. Electron. Mater. 25, 1113 (1996).

    CAS  Google Scholar 

  7. M. Shaeffer, W. Laub, R.A. Fournelle, and J. Liang, Design and Reliability of Solders and Solder Interconnections, eds. R.K. Mahidhara, S.M.L. Sastry, and P.K. Liaw (Warrendale PA: TMS, 1997), p. 247.

    Google Scholar 

  8. L.-H. Su, Y.-W. Wen, C.-C. Lin, and S.-W. Chen, Metall. Mater. Trans. B 28B, 934 (1997).

    Google Scholar 

  9. A. Hayashi, C.R. Kao, and Y.A. Chang, Scripta Metall. 37, 393 (1997).

    Article  CAS  Google Scholar 

  10. R.A. Gagliano and M.E. Fine, JOM 53 (6), 33 (2001).

    CAS  Google Scholar 

  11. S.K. Kang and V. Ramachandran, Scripta Metall. 14, 421 (1980).

    Article  CAS  Google Scholar 

  12. G. Ghosh, J. Electron. Mater. 29, 1182 (2000).

    Article  CAS  Google Scholar 

  13. D. Yao and J.K. Shang, Metall. Mater. Trans. A 26A, 2677 (1995).

    CAS  Google Scholar 

  14. G. Ghosh, Northwestern University, unpublished research.

  15. M.S. Gagliano and M.E. Fine, CALPHAD 25, 207 (2001).

    Article  CAS  Google Scholar 

  16. B. Sundman, B. Jansson, and J.O. Andersson, CALPHAD 9, 153 (1985).

    Article  CAS  Google Scholar 

  17. C.V. Howard and M.G. Reed, Unbiased Stereology (New York: Springer-Verlag, 1998).

    Google Scholar 

  18. M. Volmer and A. Weber, Z. Phys. Chem. 119, 277 (1926).

    CAS  Google Scholar 

  19. R. Becker and W. Döring, Ann. Phys. 24, 719 (1935).

    CAS  Google Scholar 

  20. D. Turnbull and J.C. Fisher, J. Chem. Phys. 17, 71 (1949).

    Article  CAS  Google Scholar 

  21. A.K. Jena and M.C. Chateverdi, Phase Transformations in Materials (Englewood Cliffs, NJ: Prentice-Hall, 1992), pp. 132–159.

    Google Scholar 

  22. J.-H. Shim, C.-S. Oh, B.-J. Lee, and D.N. Lee, Z. Metallkd. 87, 205 (1996).

    CAS  Google Scholar 

  23. G. Ghosh, Metall Mater. Trans. A 30A, 5 (1999).

    Article  CAS  Google Scholar 

  24. G. Ghosh, Metall Mater. Trans. A 30A, 1481 (1999).

    CAS  Google Scholar 

  25. B.-J. Lee, N.M. Hwang, and H.M. Lee, Acta Mater. 45, 1867 (1997).

    Article  CAS  Google Scholar 

  26. R.J. Ravelo and M.I. Baskes, Materials Research Society Symposia Proceedings (Pittsburgh, PA: Materials Research Society, 1996), p. 287.

    Google Scholar 

  27. C.H. Ma and R.A. Swalin, Acta Metall. 8, 388 (1960).

    Article  CAS  Google Scholar 

  28. Y. Shoji, S. Uchida, and T. Ariga, Trans. JIM 21, 383 (1980).

    CAS  Google Scholar 

  29. J.R. Cahoon, Metall. Mater. Trans. A. 28A, 583 (1997).

    Article  Google Scholar 

  30. S.K. Sen, M.B. Dutt, and A.K. Barua, Phys. Status Solidi (a) 32, 345 (1975).

    Article  CAS  Google Scholar 

  31. V.A. Gorbachev, S.M. Klotsman, Y.A. Rabovskiy, V.K. Talinskiy, and A.N. Timofevev, Fiz. Metal. Metalloved. 35, 889 (1973).

    CAS  Google Scholar 

  32. R.L. Fogel’son, Y.A. Ugay, and I.A. Akimova, Fiz. Metal. Metalloved. 37, 1107 (1973).

    Google Scholar 

  33. I. Kawakatsu, T. Osawa, and H. Yamaguchi, Trans. JIM 13, 436 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gagliano, R.A., Ghosh, G. & Fine, M.E. Nucleation kinetics of Cu6Sn5 by reaction of molten tin with a copper substrate. J. Electron. Mater. 31, 1195–1202 (2002). https://doi.org/10.1007/s11664-002-0010-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-002-0010-1

Key words

Navigation