Skip to main content
Log in

Use of multicomponent phase diagrams for predicting phase evolution in solder/conductor systems

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Although the complete phase equilibrium is never reached in interconnection applications, the assumption of local equilibrium at the interfaces is generally valid in most systems composed of dissimilar materials. Therefore, the tie lines in ternary (or multicomponent) phase diagrams—together with the relevant stability diagrams and the mass balance requirements—can be used for predicting the phase sequences (i.e. diffusion paths) formed, for example, in solder/conductor joints. Generally, binary phase diagrams alone cannot provide sufficient information on the phase formation in solder/conductor systems because they do not bear any information on the relative stabilities between different binary phases in multicomponent systems. As examples, the formation of intermetallic compounds in several solder/conductor systems with Au- or Cu-metallization was studied with the help of ternary phase diagrams as well as experimentally. The phase diagrams were calculated using thermodynamic methods. The experimental results confirmed that the dependence of formation of intermetallic compounds on temperature and solder composition is clearly represented by the phase diagrams supplemented with the stability diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.K. Kivilahti, IEEE Trans. Comp., Pkg. Manuf. Technol.: Part B 18, 326 (1995).

    Article  CAS  Google Scholar 

  2. R.J. Fields, S.R. Low {jrIII}, and G.K. Lucey, Metal Science of Joining, ed. M.J. Cieslak, J.H. Perepezko, S. Kang, and M.E. Glicksman, Warrendale, PA: TMS, 1992), pp. 165–174.

    Google Scholar 

  3. S.F. Dirnfeld and J.J. Ramon, Weld. J. 69, 373s, (1990).

    Google Scholar 

  4. C.Y. Liu, C. Chen, A.K. Mal, and K.N. Tu, J. Appl. Phys. 85, 3882 (1999).

    Article  CAS  Google Scholar 

  5. H.D. Blair, T.-Y. Pan, and J.M. Nicholson, Proc. 48th Electron. Comp. & Technol. Conf. New York: IEEE, 1988), pp. 259–267.

    Google Scholar 

  6. P.G. Harris and K.S. Chaggar, Sold. Surf. Mount. Technol. 10, 38 (1998).

    Article  CAS  Google Scholar 

  7. S.-Y. Jang and K.W. Paik, Sold. Surf. Mount Technol. 10, 29 (1998).

    Article  CAS  Google Scholar 

  8. D. Frear, D. Grivas, and J.W. Morris, {jrJr.}, J. Electron. Mater. 16, 181 (1987).

    Article  CAS  Google Scholar 

  9. R.E. Pratt, E.I. Stromswold, and D.J. Quesnel, IEEE Trans. CPMT-A 19, 134 (1996).

    CAS  Google Scholar 

  10. C.H. Raeder, D. Mitlin, and W. Yang, Proc. 7th Inter. SAMPE Electronics Conf. (Covina, CA: Soc. Adv. Mater. Process Eng., 1994), pp. 355–365.

    Google Scholar 

  11. K.J. Rönkä, F.J.J. van Loo, and J. Kivilahti, Scr. Mater. 37, 1575 (1997).

    Article  Google Scholar 

  12. D. Yao and J.K. Shang, Metall. Mater. Trans. A 26, 2677 (1995).

    Google Scholar 

  13. J.K. Kivilahti and K. Kulojärvi, Proc. Design and Reliability of Solders and Solder Interconnections, ed. R.K. Mahidhara et al. (Warrendale, PA: TMS, 1997), pp. 377–384.

    Google Scholar 

  14. A.J. Sunwoo, J.W. Morris, {jrJr.}, and G.K. Lucey, {jrJr.}, Metall. Trans. A 23, 1323 (1992).

    Google Scholar 

  15. D. Grivas, D. Frear, L. Quan, and J. Morris, J. Electron. Mater. 15, 355 (1986).

    Article  CAS  Google Scholar 

  16. L. Kaufman and H. Bernstein, Computer Calculation of Phase Diagrams (New York: Academic Press, 1970).

    Google Scholar 

  17. J.S. Kirkaldy and D.J. Young, Diffusion in the Condensed State (London: The Institute of Metals, 1987).

    Google Scholar 

  18. J.L. Meijering, ASM Trans. 51, 199 (1959).

    Google Scholar 

  19. F.J.J. van Loo, J.A. van Beek, G.F. Bastin, and R. Metselaar, Diffusion in Solids: Recent Developments, ed. M.A. Dayananda and G.E. Murch, (Warrendale, PA: TMS, 1985), pp. 231–259.

    Google Scholar 

  20. H. Ohtani, K. Okuda, and K. Ishida, J. Phase Equil. 16, 416 (1995).

    Article  CAS  Google Scholar 

  21. J.-H. Shim, C.-S. Oh, B.-J. Lee, and D.N. Lee, Z. Metallkd. 87, 205 (1996).

    CAS  Google Scholar 

  22. A. Bolcavage, C.R. Kao, S.L. Chen, and Y.A. Chang, Applications of Thermodynamics in the Synthesis and Processing of Materials, ed. P. Nash and B. Sundman (Warrendale, PA: TMS, 1995), pp. 171–185.

    Google Scholar 

  23. IPMA—The Thermodynamic Databank for Interconnection and Packaging Materials, Report, Laboratory of Electronics Production, Helsinki University of Technology, Helsinki (1996).

  24. O. Teppo, J. Niemela, and P. Taskinen, Thermochim. Acta 173, 137 (1990).

    Article  CAS  Google Scholar 

  25. W.G. Bader, Weld. J., Res. Suppl. 48, 551 (1969).

    Google Scholar 

  26. J.L. Marshall, Solder Joint Reliability—Theory and Applications, ed. J.H. Lau (New York: Van Nostrand Reinhold, 1991), pp. 173–224.

    Google Scholar 

  27. W.B. Harding and H.B. Pressly, Proc. 50th Annual Am. Electroplat. Soc. Conf. (Orlando, FL: Amer. Electroplat. Soc., 1963), pp. 90–106.

    Google Scholar 

  28. F.G. Foster, ASTM Spec. Publ. (1963), pp. 13–19.

  29. R. Duckett and M.L. Ackroyd, Electroplat. Met. Finish. 29, 13 (1976).

    CAS  Google Scholar 

  30. H.P. Kehrer and E.M. Wenzel, Metall. 33, 1047 (1979).

    CAS  Google Scholar 

  31. W.A. Mulholland and D.L. Willyard, Weld. J., Res. Suppl. 54, 466s (1974).

    Google Scholar 

  32. R.N. Wild, Effects of Gold on the Properties of Solders, Report 67-825-2157 (Owego, NY: IBM Federal Systems Div., Jan. 1968).

    Google Scholar 

  33. A.D. Romig, Y.A. Chang, J.J. Stephens, D.R. Frear, V. Marcotte, and C. Lea, Solder Mechanics—A State of the Art Assessment, ed. D.R. Frear, W.B. Jones, and K.R. Kinsman (Warrendale, PA: TMS, 1991), pp. 29–104.

    Google Scholar 

  34. G. Humpston and D.S. Evans, Mater. Sci. Technol. 3, 621 (1987).

    CAS  Google Scholar 

  35. G. Humpston and B.L. Davies, Mater. Sci. Technol. 1, 433 (1985).

    CAS  Google Scholar 

  36. G. Humpston and B.L. Davies, Metal Sci. 18, 329 (1984).

    Article  CAS  Google Scholar 

  37. A. Prince, J. Less-Common Met. 10, 365 (1966).

    Article  CAS  Google Scholar 

  38. A. Prince, J. Less-Common Met. 12, 107 (1967).

    Article  CAS  Google Scholar 

  39. M.M. Karnowsky and A. Rosenzweig, Trans. Metall. Soc. AIME 242, 2257 (1968).

    CAS  Google Scholar 

  40. E.-B. Hannech and C.R. Hall, Mater. Sci. Technol. 8, 817 (1992).

    CAS  Google Scholar 

  41. C.E. Ho, Y.M. Chen, and C.R. Kao, J. Electron. Mater. 28, 1231 (1999).

    Article  CAS  Google Scholar 

  42. P.G. Kim and K.N. Tu, Mater. Chem. Phys. 53, 165 (1998).

    Article  CAS  Google Scholar 

  43. P.G. Kim and K.N. Tu, J. Appl. Phys. 80, 3822 (1996).

    Article  CAS  Google Scholar 

  44. P.-Y. Chevalier, Thermochim. Acta 130, 1 (1988).

    Article  CAS  Google Scholar 

  45. I. Ansara, Thermodynamic Assessment of the Au-In-Pb System, Report, ENSEEG Domaine Universitaire, Grenoble, France (1986).

    Google Scholar 

  46. D.H. Daebler, Surf. Mount. Technol. 5, 43 (1991).

    Google Scholar 

  47. E.G. Colgan, B.Y. Tsaur, and J.W. Mayer, Appl. Phys. Lett. 37, 938 (1980).

    Article  CAS  Google Scholar 

  48. U. Gösele and K.N. Tu, J. Appl. Phys. 53, 3252 (1982).

    Article  Google Scholar 

  49. G. Majni, C. Nobili, G. Ottaviani, M. Costato, and E. Galli, J. Appl. Phys. 52, 4047 (1981).

    Article  CAS  Google Scholar 

  50. G. Majni, M. Costato, F. Panini, and G. Celotti, J. Phys. Chem. Solids 46, 631 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editor's Note: All compositions are given in wt.% throughout the paper unless otherwise stated.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, K., Kivilahti, J.K. Use of multicomponent phase diagrams for predicting phase evolution in solder/conductor systems. J. Electron. Mater. 30, 35–44 (2001). https://doi.org/10.1007/s11664-001-0212-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-001-0212-y

Key words

Navigation