Skip to main content
Log in

The effects of process conditions and substrate on copper MOCVD using liquid injection of (hfac)Cu(vtmos)

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Copper MOCVD (metalorganic chemical vapor deposition) using liquid injection for effective delivery of the (hfac)Cu(vtmos) [1,1,1,5,5,5-hexafluoro-2,4-pentadionato(vinyltrimethoxysilane) copper(I)] precursor has been performed to clarify growth behavior of copper films onto TiN, <100> Si, and Si3N4 substrates. Especially, we have studied the influences of process conditions and the substrate on growth rates, impurities, microstructures, and electrical characteristics of copper films. As the reactor pressure was increased, the growth rate was governed by a pick-up rate of (hfac)Cu(vtmos) in the vaporizer. The apparent activation energy for copper growth over the surface-reaction controlled regime from 155°C to 225°C was in the range 12.7–32.5 kcal/mol depending upon the substrate type. It revealed that H2 addition at 225°C substrate temperature brought about a maximum increase of about 25% in the growth rate compared to pure Ar as the carrier gas. At moderate deposition temperatures, the degree of a <111> preferred orientation for the deposit was higher on the sequence of <Cu/Si<Cu/TiN<Cu/Si3N4. The relative impurity content within the deposit was in the range 1.1 to 1.8 at.%. The electrical resistivity for the Cu films on TiN illustrated three regions of the variation according to the substrate temperature, so the deposit at 165°C had the optimum resistivity value. However, the coarsened microstructures of Cu on TiN prepared above 275°C gave rise to higher electrical resistivities compared to those on Si and Si3N4 substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.S. Kim, M. Park, C.H. Kim, H.K. Yu, and H.J. Cho, ETRI J. 214, 1 (1999).

    Google Scholar 

  2. A. Kobayashi, A. Sekiguchi, K. Ikeda, O. Okada, and T. Koide, Trans. IEICE, J82-C-II, 439 (1999).

    Google Scholar 

  3. N. Awaya and Y. Arita, Jpn. J. Appl. Phys. 30, 1813 (1991).

    Article  CAS  Google Scholar 

  4. T. Ohmi, T. Saito, M. Otsuki, and T. Shibata, J. Electrochem. Soc. 138, 1089 (1991).

    Article  CAS  Google Scholar 

  5. L. Vanasupa, D. Pinck, Y.C. Joo, T. Nogami, S. Pramanick, S. Lopatin, and K. Yang, Electrochem. Solid-State Lett. 2, 275 (1999).

    Article  CAS  Google Scholar 

  6. J.S.H. Cho, H.K. Kang, S.S. Wong, and Y. Shacham-Diamond, Mater. Res. Soc. Bull. 18, 31 (1993).

    CAS  Google Scholar 

  7. A.E. Braun, Semicon. Inter. August, 58 (1999).

    Google Scholar 

  8. C.H. Jun, Y.T. Kim, J.T. Baek, D.R. Kim, and H.J. Yoo, J. Vac. Sci. Technol. A 14, 3214 (1996).

    Article  CAS  Google Scholar 

  9. G. Braeckelmann, D. Manger, A. Burke, G.G. Peterson, A.E. Kaloyeros, C. Reidsema, T.R. Omstead, J.F. Loan, and J.J. Sullivan, J. Vac. Sci. Technol. B 14, 1828 (1994).

    Article  Google Scholar 

  10. G.A. Petersen, J.E. Parmeter, C.A. Apblett, M.F. Gonzales, P.M. Smith, T.R. Omstead, and J.A.T. Norman, J. Electrochem. Soc. 142, 939 (1995).

    Article  CAS  Google Scholar 

  11. Materials Delivery Products Division, Bulletin DLI25B-4/96, (Methuen, MA: MKS Instruments, 1996).

    Google Scholar 

  12. H. Schlichting, Boundary-Layer Theory, 7th Edition (New York: McGraw-Hill, 1979), pp. 95–101.

    Google Scholar 

  13. J.F. Loan and J.J. Sullivan, Proc. Symp. Chemical Vapor Deposition (Seoul: Korean Vacuum Society, 1995), pp. 40–68.

    Google Scholar 

  14. E.S. Choi, S.K. Park, and H.H. Lee, J. Electrochem. Soc. 143, 624 (1996).

    Article  CAS  Google Scholar 

  15. R. Haase, Thermodynamics of Irreversible Processes, 1st Edition (London: Addison-Wesley Publishing, 1969), pp. 355–370.

    Google Scholar 

  16. S.G. Yoon, J.D. Park, J.H. Choi, and H.G. Kim, J. Vac. Sci. Technol. A 9, 281 (1991).

    Article  CAS  Google Scholar 

  17. L.G. Berry, Powder Diffraction File, No. PD1S-5iRB, 3rd Edition, Philadelphia: Joint Committee on Powder Diffraction Standards, 1974).

    Google Scholar 

  18. H.W. Piekaar, L.F. Tz. Kwakman, and E.H.A. Granneman, Proc. 6th VLSI Multilevel Interconnection Conf, Santa Clara, CA: VMIC, 1989), pp. 122–124.

    Book  Google Scholar 

  19. J. Li and Y. Schacham-Diamand, J. Electrochem. Soc. 139, L37 (1992).

    Article  CAS  Google Scholar 

  20. R.F. Bunshah, Handbook of Deposition Technologies for Films and Coatings, 2nd Edition (Park Ridge, NJ: Noves Publications, 1994), pp. 682–695.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jun, CH., Kim, Y.T. The effects of process conditions and substrate on copper MOCVD using liquid injection of (hfac)Cu(vtmos). J. Electron. Mater. 30, 27–34 (2001). https://doi.org/10.1007/s11664-001-0211-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-001-0211-z

Key words

Navigation