Skip to main content
Log in

Formation of ohmic contacts to α-SiC and their impact on devices

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The history of power electronic semiconductor devices is reviewed that leads to a discussion of new materials. The wide bandgap and good thermal conductivity of SiC permit its use at high temperatures, and the high electric field breakdown is favorable for high power devices. However, there remain a number of key problems with SiC semiconductor technology that must be solved before reliable production can begin. Difficulties with the insulator-to-SiC interface, SiC epitaxial material, passivation, doping, and stability of contacts drive viable device structures. One issue, the formation of electrical contacts, is described in more detail. In particular, the impact of SiC preparation procedures, surface roughness, and deposition conditions are discussed, e.g., variations in the chemical cleaning process affect the removal of overlayers and/or the roughneing of the SiC surface. Studies have shown that this cleaning or etching step can in turn affect device performance. At present, fabrication of the best quality contacts is interlinked with other material problems, and even to obtain adequately low resistivities, constraints are placed on the processing of devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.I. Harris and A.O. Konstantinov, Physica Scripta T79, 271 (1999).

    Article  Google Scholar 

  2. http://www.liv.ac.uk/EEE/ssg/power.htm

  3. N. Mohan, T.M. Undeland, and W.P. Robbins, Power Electronics: Converters, Applications and Design, 2nd edition (New York: Wiley, 1995).

    Google Scholar 

  4. P. Antognetti, editorl, Power Integrated Circuits (New York: McGraw-Hill, 1986).

    Google Scholar 

  5. B.K. Bose, editor, Power Electronics and Variable Frequency Drives: Technology and Applications (Piscataway, NJ: IEEE Press, 1997).

    Google Scholar 

  6. J. Kilby, Amer. Vac. Soc. Ann. Symp. Plenarytalk (New York: Amer. Vac. Soc., 1997).

    Google Scholar 

  7. A. Itoh and H. Matsunami, CRC Critical Rev. Solid state and Mater. Sci. 22, 111 (1997).

    Article  Google Scholar 

  8. C.E. Weitzel, Mater. Sci. Forum 264–8, 907 (1998).

    Google Scholar 

  9. S.J. Pearton, F. Ren, R.J. Shul, J.C. Zolper, and A. Katz, Mater. Res. Soc. Conf. Proc. 468, 331 (1997).

    CAS  Google Scholar 

  10. V. Benda, J. Gowar, and D.A. Grant, Power Semiconductor Devices: Theory and Applications (Toronto, Canada: Wiley, 1999), p. 399.

    Google Scholar 

  11. http://www.cree.com/products/sic/sic.htm.

  12. J.A. Cooper, Mater. Sci. Eng. B44, 387 (1997).

    Article  CAS  Google Scholar 

  13. K. Hara, Mater. Sci. Forum 264–8, 901 (1998).

    Google Scholar 

  14. B.J. Baliga, IEEE Electron Dev. Lett. EDL-10, 455 (1989).

  15. K.G. Irvine, Paper presented at the Spring Mater. Res. Soc. Mtg., San Francisco, CA, 1998).

  16. K.J. Schoen, J.P. Hemming, J.M. Woodall, J.A. Cooper, Jr., and M.R. Melloch, IEEE Electron Dev. Lett. 19, 97 (1998).

    Article  CAS  Google Scholar 

  17. K. Xie, J. Zhao, J. Flemish, T. Burke, W. Buchwald, G. Lorenzo, and H. Singh, IEEE Electron Dev. Lett. 17, 142 (1996).

    Article  Google Scholar 

  18. S. Seshadri et al., IEEE Device Res. Conf. Proc. (Piscataway, NJ: IEEE, 1997), p. 36.

    Google Scholar 

  19. R.R. Siergiej et al. (Paper presented at the 24th Int. Symp. on Compound Semicond., San Diego, CA, Sept. 1997).

  20. A. Agarwal et al., Mater. Sci. Forum 264–8, 989 (1998).

    Google Scholar 

  21. J.W. Palmour and R. Singh, Proc. ISPSD (Publisher's City: Publishing Company Name, 1997).

    Google Scholar 

  22. J.B. Casady et al., IEEE Device Res. Conf. Proc. (Piscataway, NJ: IEEE, 1997), p. 32.

    Google Scholar 

  23. J. Spitz et al. (Late news paper presented at the IEEE Device Res. Conf., Ft. Collins, CO, June 1997).

  24. D. Peters, R. Schorner, P. Friedrichs, J. Volkl, H. Mitlehner, and D. Stephani, IEEE Trans. Electron Dev. 46, 542 (1999).

    Article  CAS  Google Scholar 

  25. L.S. Rea, Mater. Res. Soc. Conf. Proc. 423, 3 (1996).

    CAS  Google Scholar 

  26. N. Ramungul, T.P. Chow, M. Ghezzo, J. Kretchmer, and W. Hennessy, 1996 Ann. Dev. Res. Conf. Dig. 56–7 (Publisher's City: Publishing Company Name, 1996).

    Book  Google Scholar 

  27. B.J. Baliga, IEEE Trans. on Electron Dev. 38, 1568 (1991).

    Article  Google Scholar 

  28. V. Saxena, J.N. Su, and A.J. Steckl, IEEE Trans. Electron Dev. 46, 456 (1999).

    Article  CAS  Google Scholar 

  29. Q. Wahab, T. Kimoto, A. Ellison, C. Hallin, M. Tuominen, R. Yakimova, A. Henry, J.P. Bergman, and E. Janzen, Appl. Phys. Lett. 72, 445 (1998).

    Article  CAS  Google Scholar 

  30. L. Porter and R. Davies, Mater. Sci. & Eng. B (1995).

  31. J. Crofton, L.M. Porter, and J.R. Williams, Pohys. Stat. Sol. (1997).

  32. J. Kriz, T. Scholz, K. Gottfried, J. Leibelt, C. Kaufmann, and T. Gessner, Mater. Sci. Forum, ICSCIII-N '97, vols. 264–268 (1998), p. 775.

    Google Scholar 

  33. I. Valsov, A. Lyalin, E. Obraztsova, A. Simakin, and G. Shafeev, Quantum Electron. 28, 673 (1998).

    Article  Google Scholar 

  34. T. Marinova, L. Kassamakova, S. Cassette, C. Brylinski, B. Pecz, and G. Radnoczi, Mater. Sci. and Eng. B46 223 (1997).

    CAS  Google Scholar 

  35. D. Alok, B.J. Baliga, and P.K. McLarty, IEDM Technical Digest (1993), pp. 691–694.

  36. A.K. Chadda, J.D. Parsons, and G.B. Kruaval, Appl. Phys. Lett. 66, 760 (1995).

    Article  Google Scholar 

  37. S.-K. Lee, C.-M. Zetterling, E. Danielsson, M. Östling, J.-P. Palmquist, H. Högberg, and U. Jansson, Appl. Phys. Lett. 77, 1478 (2000).

    Article  CAS  Google Scholar 

  38. T. Jang, L.M. Porter, G.W.M. Rutsch, and B. Odekirk, Appl. Phys. Lett. 75, 3956 (1999): and T. Jang, B. Odekirk, L.D. Madsen, and L.M. Porter, J. Appl. Phys. (in press).

    Article  CAS  Google Scholar 

  39. S. Liu and J.D. Scofield, Mater. Sci. Forum 264, 791 (1998).

    Article  Google Scholar 

  40. L. Kassamakova, R. Kakanakov, N. Nordell, and S. Savage, Mater. Sci. Forum 264–268, 78 (1998).

    Google Scholar 

  41. L. Kassamakova, R. Kakanakov, N. Nordell, S. Savage, B. Hjörvarsson, E.B. Svedberg, L. Åbom, and L.D. Madsen, IEEE Trans. Electron. Dev. 46, 605 (1999).

    Article  CAS  Google Scholar 

  42. N.A. Papanokolaou, A. Eduards, M.V. Rao, and W.T. Anderson, Appl. Phys. Lett. 73, 2009 (1998).

    Article  Google Scholar 

  43. T.N. Oder, J.R. Williams, M. Bozack, V. Iyer, S.E. Mohney, and J. Crofton, J. Electron. Mater. 27, 324 (1998).

    Article  CAS  Google Scholar 

  44. T.N. Oder, J.R. Williams, S.E. Mohney, and J. Crofton, J. Electron. Mater. 27, 12 (1998).

    Article  CAS  Google Scholar 

  45. K. Tone, S.R. Weiner, and J.H. Zhao, Mater. Sci. Forum 264–268, 689 (1998).

    Google Scholar 

  46. T. Uemoto, Jpn. J. Appl. Phys. 34, L7 (1995).

    Article  CAS  Google Scholar 

  47. B. Pecz, G. Radnóczi, S. Cassette, C. Brylinski, C. Arnodo. and O. Noblanc, Diamond Mater. (1997).

  48. M.G. Rastegaeva, A.N. Andreev, A.A. Petrov, A.I. Babinin, M.A. Yagovkina, and I.P. Nikitinal, Mater. Sci. and Eng. B46, 254 (1997).

    CAS  Google Scholar 

  49. L.D. Madsen, E.B. Svedberg, H.H. Radamson, C. Hallin, B. Hjörvarsson, C. Cabral, Jr., J.L. Jordan-Sweet, and C. Lavoie, Mater. Sci. Forum 264–268, 799 (1998).

    Google Scholar 

  50. K. Robbie, S.T. Jemander, N. Lin, C. Hallin, R. Erlandsson, G.V. Hansson, and L.D. Madsen, accepted Phys. Rev. B (2001); K. Robbie, S.T. Jemander, N. Lin, R. Erlandsson, G.V. Hansson, and L.D. Madsen, Mater. Sci. Forum 338–342, 981 (2000).

  51. E.D. Luckowski, J.R. Williams, M.J. Bozack, T. Isaacs-Smith, and J. Crofton, Mater. Res. Soc. Symp. Proc. 423, 119 (1996).

    CAS  Google Scholar 

  52. C.Y. Chang and S.M. Sze, ULSI Technology (New York: McGraw-Hill, 1996).

    Google Scholar 

  53. M.J. Bozack, Phys. Stat. Sol. B202, 549/580 (1997).

    Google Scholar 

  54. W. Kern and D.A. Puotinen, RCA Rev. 197 (1970).

  55. N.V. Edwards, K. Järrendahl, D.E. Aspnes, K. Robbie, G.D. Powell, C. Cobet, N. Esser, W. Richter, and L.D. Madsen, Surf. Sci. Lett. 464, L703 (2000); N.V. Edwards, L.D. Madsen, K. Robbie, G. Powell, K. Järrendahl, C. Cobet, N. Esser, W. Richter, and D.E. Aspnes, Mater. Sci. Forum 338–342, 1033 (2000).

    Article  CAS  Google Scholar 

  56. Q. Wahab, private communication (1999).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madsen, L.D. Formation of ohmic contacts to α-SiC and their impact on devices. J. Electron. Mater. 30, 1353–1360 (2001). https://doi.org/10.1007/s11664-001-0124-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-001-0124-x

Key words

Navigation