Skip to main content

Precise measurements of the dispersion of the index of refraction for Cd1−xZnxTe alloys

Abstract

By using a prism coupler technique in conjunction with reflectivity measurements, we have obtained highly accurate relations for the dispersion of the indices of refraction n for a series of MBE-grown Cd1−xZnxTe alloys. Initially, the prism coupler technique was used to determine n at discrete wavelengths with an accuracy of at least 0.1%, and also to concurrently determine the epilayer thicknesses with an uncertainty of less than 0.5%. Having obtained precise values for both n (at discrete wavelengths) and the thicknesses of the Cd1−xZnxTe epilayers, we were then able to correctly decipher the values for n at the maxima and minima of the reflectivity spectra observed on the above epilayers, and thereby generate a continuous variation of the indices of refraction as a function of wavelength. Fitting the dispersion of n in each alloy to a Sellmeier-type dispersion relation, we have obtained the dependence of the constants appearing in this relation on the alloy concentration. This enables one to predict n not only as a function of wavelength, but also as a function of alloy composition.

This is a preview of subscription content, access via your institution.

References

  1. Q.T. Islam and B.A. Bunker, Phys. Rev. Lett. 59, 2701 (1987).

    Article  CAS  Google Scholar 

  2. R. Weil, R. Nkum, E. Muranevich, and L. Benguigui, Phys. Rev. Lett. 62. 2744 (t989).

  3. J.F. Butler, F.P. Doty, B. Apotovsky, J. Lajzerowicz, and L. Verger, Mater. Sci. Eng. B 16, 291 (1993).

    Article  Google Scholar 

  4. A. Szilagyi and M.N. Grimbergen, J. Cryst. Growth 86, 912 (1986).

    Article  Google Scholar 

  5. R.B. James. T.E. Schlesinger, J. Lund, and M. Scheiber, Semiconductors and Semimetals, Vol. 43, ed. T.E. Schlesinger and R.B. James (New York: Academic, 1995), p. 335.

    Google Scholar 

  6. D.J. Olego, J.P. Faurie, S. Sivananthan, and P.M. Raccah, Appl. Phys. Lett. 47, 1172 (1985).

    Article  CAS  Google Scholar 

  7. R.D. Feldman, R.F. Austin, A.H. Dayern, and E. H. Westerwick, Appl. Phys. Lett. 49, 797 (1986).

    Article  CAS  Google Scholar 

  8. J.H. Dinan and S.B. Qadri, J. Vac. Sci. Technol. A 3, 851 (1985).

    Article  CAS  Google Scholar 

  9. S.M. Johnson, S. Sen, W.H. Konkel, and M.H. Kalisher, J. Vac. Sci. Technol. B 9, 197 (1991).

    Article  Google Scholar 

  10. T.L. Chu, S.S. Chu, C. Ferekides, and J. Brit, J. Appl. Phys. 71, 5635 (1992).

    Article  CAS  Google Scholar 

  11. J.J. Reinoso, E.I. Ko, and P.J. Sides, J. Cryst. Growth 174, 713 (1997).

    Article  CAS  Google Scholar 

  12. R.K. Nkum, R. Weil, E. Muranevich, L. Benguigui, and G. Kimmel, Mater. Sci. Eng. B 9, 217 (1991).

    Article  Google Scholar 

  13. H. Yoon, S.E. Lindo, and M.S. Goorsky, J. Cryst. Growth 174, 775 (1997).

    Article  CAS  Google Scholar 

  14. S. Adach and T. Kimura, Jpn. J. Appl. Phys. 32, 3866 (1993).

    Article  Google Scholar 

  15. R. Weil, M. Joucla, J.L. Loison, M. Mazilu, D. Ohlmann, M. Robino, and G. Schwalbach, Appl. Opt. 37, 2681 (1998).

    Article  CAS  Google Scholar 

  16. T. Hattori, Y. Homma, A. Mitsuishi, and M. Tache, Opt. Comm. 7, 229 (1973).

    Article  CAS  Google Scholar 

  17. B. Langen, H. Leiderer, W. Limmer, W. Gebhardt, M. Ruff, and U. Rossler, J. Cryst. Growth 101, 718 (1990).

    Article  CAS  Google Scholar 

  18. H. Okuyama, K. Nakano, T. Miyajima, and K. Akimoto, Jpn. J. Appl. Phys. 30, L1620 (1991).

    Google Scholar 

  19. Y.D. Kim, S.G. Choi, M.V. Klein, S.D. Yoo, D.E. Aspnes, S.H. Xin, and J.K. Furdyna, Appl. Phys. Lett. 70, 610 (1997).

    Article  CAS  Google Scholar 

  20. P.K. Tein, Rev. Mod. Phys. 49, 361 (1977).

    Article  Google Scholar 

  21. H.J. Lee, C.H. Henry, K.J. Orlowsky, R.F. Kazarinov, and T.Y. Kometani, Appl. Opt. 27, 4104 (1988).

    Article  CAS  Google Scholar 

  22. F.C. Peiris, S. Lee, U. Bindley, and J.K. Furdyna, J. Appl. Phys. 84, 5194 (1998).

    Article  CAS  Google Scholar 

  23. F.C. Peiris, S. Lee, U. Bindley, and J.K. Furdyna, J. Vac. Sci. Technol. B 17, 1214 (1999).

    Article  CAS  Google Scholar 

  24. F.C. Peiris, S. Lee, U. Bindley, and J.K. Furdyna, J. Appl. Phys. 86, 719 (1999).

    Article  CAS  Google Scholar 

  25. D.K. Schroder, Semiconductor Materials and Device Characterization (New York: John Wiley, 1991), p. 476.

    Google Scholar 

  26. F.C. Peiris, S. Lee, U. Bindley, and J.K. Furdyna, J. Appl. Phys. 86, 918

  27. M. Born and E. Wolf, Principles of Optics, 3rd ed. (New York: Pergamon, 1965), p. 97.

    Google Scholar 

  28. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes, 2nd ed. (New York: Cambridge, 1992), p. 678.

    Google Scholar 

  29. D.T.F. Marple, J. Appl. Phys. 35, 539 (1964).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Peiris, F.C., Lee, S., Bindley, U. et al. Precise measurements of the dispersion of the index of refraction for Cd1−xZnxTe alloys. J. Electron. Mater. 29, 798–803 (2000). https://doi.org/10.1007/s11664-000-0227-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-000-0227-9

Key words

  • Cd1−xZnxTe
  • MBE
  • index of refraction
  • prism coupler
  • reflectivity