Journal of Electronic Materials

, Volume 29, Issue 2, pp 205–209 | Cite as

Effect of high-temperature annealing on GaInP/GaAs HBT structures grown by LP-MOVPE

  • F. Brunner
  • E. Richter
  • T. Bergunde
  • I. Rechenberg
  • A. Bhattacharya
  • A. Maassdorf
  • J. W. Tomm
  • P. Kurpas
  • M. Achouche
  • J. Würfl
  • M. Weyers
Regular Issue Paper

Abstract

We have investigated the effect of high-temperature annealing on device performance of GaInP/GaAs HBTs using a wide range of MOVPE growth parameters for the C-doped base layer. Carbon doping was achieved either via TMG and AsH3 only or by using an extrinsic carbon source. High-temperature annealing causes degradation of carbon-doped GaAs in terms of minority carrier properties even at doping levels of p=1 × 1019 cm−3. The measured reduction in electron lifetime and luminescence intensity correlates with HBT device results. It is shown that the critical temperature where material degradation starts is both a function of doping method and carbon concentration.

Key words

Gallium arsenide carbon doping heterojunction bipolar transistors annealing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.T. Cunningham, L.J. Guido, J.E. Baker, J.S. Major, Jr., N. Holonyak, Jr., and G.E. Stillman, Appl. Phys. Lett. 55, 687 (1989).CrossRefGoogle Scholar
  2. 2.
    R. Rahbi, B. Pajot, J. Chevalier, A. Marbeuf, R.C. Logan, and M. Gavand, J. Appl. Phys. 73, 1723 (1993).CrossRefGoogle Scholar
  3. 3.
    C.R. Abernathy and F. Ren, Mater. Sci. and Engg. B28, 232 (1994).CrossRefGoogle Scholar
  4. 4.
    O. Ueda, A. Kawando, T. Takahashi, T. Tomioka, T. Fujii, and S. Sasa, Sol. State Electron. 41, 1605 (1997).CrossRefGoogle Scholar
  5. 5.
    M. Kozuch, M. Stavola, S.J. Pearton, C.R. Abernathy, and W.S. Hobson, J. Appl. Phys. 73, 3716 (1993).CrossRefGoogle Scholar
  6. 6.
    S.A. Stockman, A.W. Hanson, S.L. Jackson, J.E. Baker, and G.E. Stillman, Appl. Phys. Lett. 62, 1248 (1993).CrossRefGoogle Scholar
  7. 7.
    E. Richter, P. Kurpas, M. Sato, M. Trapp, U. Zeimer, S. Hdhle, and M. Weyers, Mater. Sci. and Engg. B44, 337 (1997).CrossRefGoogle Scholar
  8. 8.
    Q.J Hartmann, H. Hwangbo, A. Yung, D.A. Ahmari, M.T. Fresina, J.E. Baker, and G.E. Stillman, Appl. Phys. Lett. 68, 982 (1996).CrossRefGoogle Scholar
  9. 9.
    S. Nozaki, K. Takahashi, M. Shirahama, K. Nagao, J. Shirakashi, and E. Tokumitsu, Appl. Phys. Lett. 62, 1913 (1993).CrossRefGoogle Scholar
  10. 10.
    J. Wagner, R.C. Newman, B.R. Davidson, S.P. Westwater, T.J. Bullough, T.B. Joyce, and S. Öberg, Phys. Rev. Lett. 78, 74 (1997).CrossRefGoogle Scholar
  11. 11.
    Q. Yang, P. Meyer, H.C. Kuo, Q. J. Hartman, J. E. Baker, D. Scott, and G.E. Stillman (Paper presented at the 25th ISCS, Nara, Japan, 1998).Google Scholar
  12. 12.
    F. Alexandre, D. Zerguine, P. Launy, J.L. Benchimol, B. Berz, B. Sermage, D. Komatitsch, and M. Juhel, J. Cryst. Growth 136, 235 (1994).CrossRefGoogle Scholar
  13. 13.
    H.K. Yow, P.A. Houston, C.C. Button, J.P.R. David, and C.M.S. Ng, J. Electron. Mater. 27, 17 (1998).Google Scholar
  14. 14.
    R. Driad, F. Alexandre, M. Juhel, and P. Launay, J. Vac. Sci. Technol. B14, 3509 (1996).Google Scholar
  15. 15.
    T.J. de Lyon, J.M. Woodall, M.S. Goorsky, and P.D. Kirchner, Appl. Phys. Lett. 56, 1040 (1990).CrossRefGoogle Scholar
  16. 16.
    R.E. Welser, N. Pan, D.P. Vu, P.J. Zampardi, and B.T. McDermott, IEEE Trans. Electron Devices 46, 1599 (1999).CrossRefGoogle Scholar
  17. 17.
    C.M. Colomb, S.A. Stockman, N.F. Gardner, A.P. Curtis, G.E. Stillman, T.S. Low, D.E. Mars, and D.B. Davito, J. Appl. Phys. 73, 7471 (1993).CrossRefGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2000

Authors and Affiliations

  • F. Brunner
    • 1
  • E. Richter
    • 1
  • T. Bergunde
    • 1
  • I. Rechenberg
    • 1
  • A. Bhattacharya
    • 1
  • A. Maassdorf
    • 1
  • J. W. Tomm
    • 2
  • P. Kurpas
    • 1
  • M. Achouche
    • 1
  • J. Würfl
    • 1
  • M. Weyers
    • 1
  1. 1.Ferdinand-Braun-Institut für HöchstfrequenztechnikBerlin
  2. 2.Max-Born-Institut für Nichtlineare Optik und KurzzeitspektroskopieBerlin

Personalised recommendations