Skip to main content

Thermoelectric quantum-dot superlattices with high ZT

Abstract

Following the experimentally observed Seebeck coefficient enhancement in PbTe quantum wells in Pb1−xEuxTe/PbTe multiple-quantum-well structures which indicated the potential usefulness of low dimensionality, we have investigated the thermoelectric properties of PbSexTe1−x/PbTe quantum-dot superlattices for possible improved thermoelectric materials. We have again found enhancements in Seebeck coefficient and thermoelectric figure of merit (ZT) relative to bulk values, which occur through the various physics and materials science phenomena associated with the quantum-dot structures. To date, we have obtained estimated ZT values approximately double the best bulk PbTe values, with estimated ZT as high as about 0.9 at 300 K.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    T.E. Whall and E.H.C. Parker, Proc. First European Conf. on Thermoelectrics, ed. D.M. Rowe (London: Peter Peregrinus Ltd., 1987), pp. 51–63.

    Google Scholar 

  2. 2.

    S.B. Horn, Proc. of the 1st National Thermogenic Cooler Conf. (Fort Belvoir, VA: Center for Night Vision and Electro-Optics, 1992).

    Google Scholar 

  3. 3.

    T.C. Harman, U.S. patent 5,415,699 (May 16, 1995); U.S. patent 5,900,071 (May 4, 1999).

  4. 4.

    L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).

    Article  CAS  Google Scholar 

  5. 5.

    L.D. Hicks, T.C. Harman, and M.S. Dresselhaus, Appl. Phys. Lett. 63, 3230 (1993).

    Article  CAS  Google Scholar 

  6. 6.

    L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).

    Article  CAS  Google Scholar 

  7. 7.

    J.O. Sofo and G.D. Mahan, Appl. Phys. Lett. 65, 2690 (1994).

    Article  CAS  Google Scholar 

  8. 8.

    D.A. Broido and T.L. Reinecke, Phys. Rev. B 51, 13797 (1995); T.L. Reinecke and D.A. Broido, Proc. of the XVIInt. Conf. on Thermoelectrics (Piscataway, NJ: IEEE, 1997), p. 424.

    Article  CAS  Google Scholar 

  9. 9.

    G. Mahan, B. Sales, and J. Sharp, Phys. Today 50, 42 (1997).

    CAS  Google Scholar 

  10. 10.

    L.D. Hicks, T.C. Harman, X. Sun, and M.S. Dresselhaus, Phys. Rev. B 52, R10493 (1996).

  11. 11.

    T.C. Harman, D.L. Spears, and M.J. Manfra, J. Electron. Mater. 25, 1121 (1996).

    CAS  Google Scholar 

  12. 12.

    See for example, L. Jacak, P. Hawrylak, and A. Wojs, Quantum Dots (Berlin — Heidelberg — New York: Springer-Verlag, 1998), p. 16.

    Google Scholar 

  13. 13.

    T.C. Harman, P.J. Taylor, M.P. Walsh, and D.L. Spears, Abstract for the 41st Electron. Mater. Conf., Santa Barbara, CA, June 30–July 2, 1999, J. Electron. Mater. 28, 54 (1999).

    Google Scholar 

  14. 14.

    G. Chen and M. Neagu, Appl. Phys. Lett. 71, 2761 (1997).

    Article  CAS  Google Scholar 

  15. 15.

    See T. Borca-Tasciuc, D. Song, J.L. Liu, G. Chen, K.L. Wang, X. Sun, M.S. Dresselhaus, T. Radetic, and R. Gronsky, Thermoelectric materials 1998, ed. T.M. Tritt et al. (Warrendale, PA: MRS, 1999), p. 473 and references therein.

    Google Scholar 

  16. 16.

    M. Pinczolits, G. Springholz, and G. Bauer, Appl. Phys. Lett. 73, 250 (1998).

    Article  CAS  Google Scholar 

  17. 17.

    G. Springholz, V. Holy, M. Pinczolits, and G. Bauer, Science 282, 734 (1998).

    Article  CAS  Google Scholar 

  18. 18.

    V. Holy, G. Springholz, M. Pinczolits, and G. Bauer, Phys. Rev. Lett. 83, 356 (1999).

    Article  CAS  Google Scholar 

  19. 19.

    N. Frank, A. Voiticek, H. Clemens, A. Holzinger, and G. Bauer, J. Cryst. Growth 126, 293 (1993).

    Article  CAS  Google Scholar 

  20. 20.

    T.C. Harman, D.L. Spears, and M.P. Walsh, J. Electron. Mater. Lett. 28, L1 (1999).

    Google Scholar 

  21. 21.

    A.J. Strauss, personal communication.

  22. 22.

    A.J. Strauss, J. Electron. Mater. 2, 553 (1973).

    CAS  Google Scholar 

  23. 23.

    T.C. Harman, unpublished.

  24. 24.

    T. Koga, T.C. Harman, X. Sun, S.B. Cronin, and M.S. Dresselhaus, Thermoelectric Materials 1998, ed. T.M. Tritt et al. (Warrendale, PA: MRS, 1999).

    Google Scholar 

  25. 25.

    E.D. Devyatkova and V.V. Tikhonov, Sov. Phys.-Solid State 7, 1427 (1965) and references therein.

    Google Scholar 

  26. 26.

    S.M. Lee, D.G. Cahill, and R. Venkatasubramanian, Appl. Phys. Lett. 70, 2957 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Harman, T.C., Taylor, P.J., Spears, D.L. et al. Thermoelectric quantum-dot superlattices with high ZT. Journal of Elec Materi 29, L1–L2 (2000). https://doi.org/10.1007/s11664-000-0117-1

Download citation

Key words

  • PbSeTe/PbTe
  • quantum-dots
  • thermoelectric figure of merit (ZT)