Skip to main content
Log in

Electrochemical interfacial phenomena under microgravity: Part 2. Numerical analysis of the rate of ionic mass transfer accompanying anodic copper dissolution

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The anodic dissolution phenomena of copper, under microgravity in a drop shaft, was compared to that in terrestrial experiments. A 0.1 M CuSO4-1 M H2SO4 solution layer was confined to a shallow (200-μm-thick) and horizontally installed electrolytic cell. Relatively higher constant current densities were applied for visualization within 8 seconds of electrolysis duration. Fluid flows were induced in the decelerated zone of the drop shaft and in the terrestrial experiment. The interference-fringe pattern, which accompanied the copper dissolution, was measured in situ with a common path-type microscopic interferometer. Numerical analysis was used to compare the development of the interference-fringe pattern in both environments. Two boundary conditions at the anode surface were employed: a constant current density with any degree of supersaturation and a solubility limit at the surface. The calculated surface concentration was used to discuss the transient variation of measured anode overpotential. A larger degree of supersaturation, before the anodic overpotential started to increase, which was probably caused by CuSO4 precipitates followed by a kind of passivation film formation, was calculated under a microgravity environment. The drop-shaft facility provides a good opportunity to study the electrochemical interfacial phenomena which are necessary to precisely design the micromachining or microfabrication processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.J. Wittenberg, J.F. Santarius, and G.L. Kulcinski: Fusion Technol., 1986, vol. 10, p. 167.

    CAS  Google Scholar 

  2. Experimental Methods for Microgravity Materials Science Research, R.A. Schiffman, ed., TMS, Warrendale, PA, 1992.

    Google Scholar 

  3. R.J. Naumann and H.W. Herring: NASA SP-443, NASA Washington, DC, 1980.

    Google Scholar 

  4. H. Kobayashi, N. Ishii, and T. Hirokawa: Proc. 9th Space Utilization Symp., Science Council of Japan, Tokyo, 1992, pp. 151–54.

    Google Scholar 

  5. C. Wagner: J. Electrochem. Soc., 1949, vol. 95, pp. 161–73.

    CAS  Google Scholar 

  6. C.R. Wilke, M. Eisenberg, and C.W. Tobias: J. Electrochem. Soc., 1953, vol. 100, pp. 513–23.

    CAS  Google Scholar 

  7. N. Ibl and R.H. Muller: Z. Electrochem., 1955, vol. 59, pp. 671–76.

    CAS  Google Scholar 

  8. C. Wagner: J. Electrochem. Soc., 1957, vol. 104, pp. 129–31.

    Article  CAS  Google Scholar 

  9. J.R. Selman and J. Newman: J. Electrochem. Soc., 1971, vol. 118, pp. 1070–78.

    Article  CAS  Google Scholar 

  10. K. Denpo, S. Teruta, Y. Fukunaka, and Y. Kondo: Metall. Trans. B, 1983, vol. 14B, pp. 633–43.

    CAS  Google Scholar 

  11. K. Higuchi, S. Yoda, A. Ogiso, and T. Yamawaki: Proc. 5th Space Utilization Symp., Science Council of Japan, Tokyo, 1988, pp. 2–6.

    Google Scholar 

  12. H.G. Stanley and N. Ostowsky: On Growth and Form—Fractal and Non-Fractal Patterns in Physics, Martinus Nijhoff Publishers, Dordrecht, The Netherlands, 1986.

    Google Scholar 

  13. D. Grier, E. Ben-Jacob, Roy Clarke, and L.M. Sander: Phys. Rev. Lett., 1986, vol. 56, pp. 1264–67.

    Article  CAS  Google Scholar 

  14. F. Argoul, A. Arnedo, G. Grasseau, and Harry L. Swinney: Phys. Rev. lett., 1988, vol. 61, pp. 2558–61.

    Article  CAS  Google Scholar 

  15. P. Garik, J. Hetrick, B. Orr, D. Barkey, and E. Ben-Jacob: Phys. Rev. Lett., 1991, vol. 66, pp. 1606–09.

    Article  CAS  Google Scholar 

  16. D.P. Barkey, D. Watt, Z. Liu, and S. Raber: J. Electrochem. Soc., 1994, vol. 141, pp. 1206–12.

    Article  CAS  Google Scholar 

  17. Y. Fukunaka, T. Yamamoto, and Y. Kondo: J. Electrochem. Soc., 1989, vol. 136, pp. 3630–33.

    Article  CAS  Google Scholar 

  18. Y. Fukunaka, K. Okano, Z. Asaki, K. Kuribayashi, and T. Maki: Trans. Mater. Res. Soc. Jpn., 1994, vol. 16B, pp. 601–05.

    Google Scholar 

  19. Y. Fukunaka, K. Okano, N. Nakaoka, Y. Tomii, Z. Asaki, K. Sumiyama, K. Kuribayashi, and T. Maki: Proc. 2nd Int. Symp. on Electrochemically Deposited Thin Films, 94–31, M. Paunovic, ed., The Electrochemical Society, Pennington, NJ, 1994, pp. 55–67.

    Google Scholar 

  20. Y. Fukunaka, Z. Asaki, Y. Nakahiro, and K. Kuribayashi: Proc. Int. Symp. “In Space ’95”, JSUP, Tokyo, 1995, pp. 417–59.

    Google Scholar 

  21. Y. Fukunaka, K. Okano, Y. Tomii, Z. Asaki, and K. Kuribayashi: Proc. 3rd Int. Symp. on Electrochemically Deposited Thin Films, 96-19, M. Paunovic and D.A. Scherson, eds., The Electrochemical Society, Pennington, NJ, 1996, pp. 136–47.

    Google Scholar 

  22. T. Mori, K. Goto, R. Ohashi, and A. Sawaoka: Microgravity Sci. Technol., 1993, vol. 5, pp. 238–42.

    Google Scholar 

  23. Y. Fukunaka, Y. Konishi, Y. Tomii, Y. Nakahiro, and K. Kuribayashi: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 99–105.

    Article  CAS  Google Scholar 

  24. LINKE: Solubilities of Inorganic and Metal Organic Compounds, 4th ed., American Chemical Society, Washington, DC, 1958, vol. 1, p. 966.

    Google Scholar 

  25. Y. Fukunaka, Y. Nakamura, and Y. Konishi: Kyoto University, Kyoto, Japan, unpublished research, 1998.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konishi, Y., Fukunaka, Y. & Kuribayashi, K. Electrochemical interfacial phenomena under microgravity: Part 2. Numerical analysis of the rate of ionic mass transfer accompanying anodic copper dissolution. Metall Mater Trans B 30, 779–790 (1999). https://doi.org/10.1007/s11663-999-0040-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-999-0040-7

Keywords

Navigation