Skip to main content
Log in

Casting-chill interface heat transfer during solidification of an aluminum alloy

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Unidirectional solidification tests on an aluminum alloy were conducted with a computer-controlled instrumented rig. The alloys employed in this study were poured into isolated ingot molds (made of recrystallized alumina and covered with ceramic fiber) placed on top of a steel plate, coated either with a graphite- or ceramic-based paint in order to avoid sticking of the material. Thermal evolution during the test was captured by type-K thermocouples placed at different positions in both the ingot and the plate. The bottom surface of the plate was either cooled with water or left to cool in air. The heat-transfer coefficients across the aluminum-steel interface were evaluated by means of a finite-difference model. It was concluded that the heat-transfer rate depends on the conditions at the interface, such as the type of coating used to protect the plate, and the solidification reactions occurring on the aluminum during its solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.D.G. Cumming and W.J. Edwards: J. Aus. Inst. Met., 1977, vol. 22, pp. 3–10.

    Google Scholar 

  2. D.N.P. Murth, N.W. Page, and E.Y. Rodin: Mathematical Modelling, Pergamon Press, Oxford, United Kingdom, 1990.

    Google Scholar 

  3. P. Sargent, H. Shercliff, and R. Wood: Modelling Materials Processing, Cambridge University Press, Cambridge, United Kingdom, 1993.

    Google Scholar 

  4. S. Atmakuri, G. Upadhya, C.M. Wang, U. Chandra, and A.J. Paul: JOM, 1993, vol. 45 (10), pp. 21–24.

    Google Scholar 

  5. A.F. Giamei and D.E. Edwards: JOM, 1993, vol. 45 (10), pp. 25–28.

    Google Scholar 

  6. J.S. Tu, D.M. Olinger, and A.M. Hines: JOM, 1993, vol. 45 (10), pp. 29–32.

    Google Scholar 

  7. C.D. Orogo, H.B. Callihan, G.K. Sigworth, and H.A. Kuhn: Modern Casting, 1993, vol. 83 (10), pp. 20–24.

    Google Scholar 

  8. W.C. Warner: Modern Casting, 1993, vol. 83 (10), pp. 25–27.

    Google Scholar 

  9. L.E. Smiley: Modern Casting, 1993, vol. 83 (11), pp. 24–26.

    Google Scholar 

  10. J.A. Horwath and L.F. Mondolfo: Acta Metall., 1962, vol. 10, pp. 1037–42.

    Article  CAS  Google Scholar 

  11. J. Campbell: Castings, Butterworth-Heinemann, Oxford, United Kingdom, 1991.

    Google Scholar 

  12. N. Tsumagari, C.E. Mobley, and P.R. Gangasani: AFS Trans., 1993, vol. 101, pp. 335–41.

    CAS  Google Scholar 

  13. K. Ho and R.D. Pehlke: ASF Trans., 1983, vol. 91, pp. 689–98.

    Google Scholar 

  14. K. Ho and R.D. Pehlke: Metall. Trans. B, 1985, vol. 16B, pp. 585–94.

    CAS  Google Scholar 

  15. S.W. Hao, Z.Q. Zhang, J.Y. Chen, and P.C. Liu: AFS Trans., 1987, vol. 95, pp. 601–08.

    CAS  Google Scholar 

  16. F. Chiesa: AFS Trans., 1990, vol. 98, pp. 193–200.

    CAS  Google Scholar 

  17. F. Chiesa and F. Mucciardi: AFS Trans., 1993, vol. 101, pp. 459–67.

    CAS  Google Scholar 

  18. K.N. Prabhu, G. Rrinivas, and N. Venkataran: AFS Trans., 1993, vol. 101, pp. 653–59.

    CAS  Google Scholar 

  19. L. Backerud and E. Krol: Solidification Characteristics of Aluminum Alloys. Vol. 2: Foundry Alloys, Skan Aluminum, Oslo, 1990.

    Google Scholar 

  20. E. Fras, W. Kapturkiewicz, A. Burbielko, and H.F. Lopez: AFS Trans., 1993, vol. 101, pp. 505–11.

    CAS  Google Scholar 

  21. J.H. Beynon and R. Colas: Metall. Mater., 1994, vol. 1 (3), pp. 4–8.

    Google Scholar 

  22. R.L. Burden and J.D. Faires: Numerical Analysis, PWS, Boston, MA, 1985.

    Google Scholar 

  23. C.M. Sellars and J.A. Whiteman: Met. Technol., 1981, vol. 8, pp. 10–21.

    CAS  Google Scholar 

  24. L.A. Leduc: Ph.D. Thesis, Sheffield University, Sheffield, United Kingdom, 1980.

    Google Scholar 

  25. Magmasoft User’s Guide, Magma Foundry Technologies, Inc., Arlington Heights, IL.

  26. G. Stolz: J. Heat Transfer, Trans. ASME, 1960, ser. C, vol. 82, pp. 20–26.

    Google Scholar 

  27. J.V. Beck: Int. J. Heat Mass Transfer, 1970, vol. 13, pp. 703–71.

    Article  Google Scholar 

  28. N. D’Souza: ASME Paper No. 75-WA/HT-81, ASME, Fairfield, NJ, 1975, pp. 1–9.

    Google Scholar 

  29. J.V. Beck: Nucl. Eng. Design, 1979, vol. 53, pp. 11–22.

    Article  Google Scholar 

  30. N.A. Shah and J.J. Moore: Metall. Trans. B, 1989, vol. 20B, pp. 893–910.

    CAS  Google Scholar 

  31. T.S.P. Kumar and K. Prabhu: Metall. Trans. B, 1991, vol. 22B, pp. 717–27.

    CAS  Google Scholar 

  32. N.A. El-Mahallawy and A.M. Assar: J. Matter. Sci, 1991, vol. 26, pp. 1729–33.

    Article  CAS  Google Scholar 

  33. C.A. Muojekwu, I.V. Samarasekera, and J.K. Brimacombe: Metall. Trans. B, 1995, vol. 26B, pp. 361–82.

    CAS  Google Scholar 

  34. Y. Nishida, W. Droste, and S. Engler: Metall. Trans. B, 1986, vol. 17B, pp. 833–44.

    CAS  Google Scholar 

  35. R.W. Powell, C.Y. Ho, and P.E. Liley: J. Phys. Chem. Ref. Data, 1972, vol. 1, pp. 279–87.

    Article  Google Scholar 

  36. D. Argo, R.A.L. Drew, and J.E. Gruzleski: AFS Trans., 1987, vol. 95, pp. 455–64.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velasco, E., Valtierra, S., Mojica, J.F. et al. Casting-chill interface heat transfer during solidification of an aluminum alloy. Metall Mater Trans B 30, 773–778 (1999). https://doi.org/10.1007/s11663-999-0039-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-999-0039-0

Keywords

Navigation