Skip to main content
Log in

High-temperature phase relations and thermodynamics in the iron-titanium-oxygen system

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Phase equilibria and thermodynamics in the FeO-TiO2-Ti2O3 ternary system were studied at 1500 °C and 1600 °C. In particular, the liquid slag-phase region and its saturation boundary with respect to metallic iron, titania, and lower titanium oxides was investigated. The liquid slag-phase region extends substantially toward an anosovite (Ti3O5) composition, and considerable concentrations of divalent iron coexist with trivalent titanium in the liquid-slag phase. This seems to be a consequence of the complete solid solution between ferrous pseudobrookite (FeTi2O5) and anosovite (Ti3O5), which exists at subsolidus temperatures. The liquid-slag field is significantly enlarged toward the anosovite composition upon increasing the temperature from 1500 °C to 1600 °C. Activities of the components “FeO” and TiO2 in the liquid-slag region were determined by Gibbs-Duhem integration of the measured oxygen partial pressures at 1500 °C. The FeO shows moderate negative deviation, while titania shows a slight negative deviation in FeO-rich slags and a positive deviation in high-titania slags. The experimentally measured activity values were modeled using regular and biregular solution models, and good agreement was obtained with the biregular solution model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.S. Darken and R.W. Gurry: J. Am. Chem. Soc., 1945, vol. 67, pp. 1398–1412.

    CAS  Google Scholar 

  2. L.S. Darken and R.W. Gurry: J. Am. Chem. Soc., 1946, vol. 68, pp. 798–816.

    Article  CAS  Google Scholar 

  3. A. Muan and E.F. Osborne: Phase Equilibria amongst Oxides in Steelmaking, 1st ed., Addison-Wesley, Reading, MA, 1965.

    Google Scholar 

  4. B. Phillips and A. Muan: J. Phys. Chem., 1960, vol. 64, pp. 1451–53.

    CAS  Google Scholar 

  5. R.C. de Vries, R. Roy, and E.F. Osborne: Trans. Br. Ceram. Soc., 1954, vol. 53(9), p. 531.

    Google Scholar 

  6. P.G. Wahlbeck and P.W. Gilles: J. Am. Ceram. Soc., 1966, vol. 49(4), pp. 180–83.

    Article  CAS  Google Scholar 

  7. J.K. Tuset: Tidsskr. Kjemi, Bergv., Metallurgi, 1968, vol. 28(11), pp. 232–40.

    CAS  Google Scholar 

  8. G. Eriksson and A.D. Pelton: Metall. Trans. B, 1993, vol. 24B(10), pp.795–805.

    CAS  Google Scholar 

  9. J.B. MacChesney and A. Muan: Am. Mineralogist, 1961, vol. 46, pp. 572–82.

    CAS  Google Scholar 

  10. A.E. Grau: Can. Metall. Q., 1979, vol. 18(3), pp. 313–22.

    CAS  Google Scholar 

  11. K. Borowiec and T. Rosenquist: Scand. J. Metall., 1981, vol. 10, pp. 217–24.

    CAS  Google Scholar 

  12. S.E. Haggerty and D.H. Lindsley: Carnegie Institute Washington, Yearbook 1968–69, 1970, vol. 68, 247–49.

    Google Scholar 

  13. I.E. Grey and R.R. Merrit: J. Solid State Chem., 1981, vol. 37, pp. 284–93.

    Article  CAS  Google Scholar 

  14. I.E. Grey and J. Ward: J. Solid State Chem., 1973, vol. 7, pp. 300–07.

    Article  CAS  Google Scholar 

  15. S. Ban-Ya, A. Chiba, and A. Hikosaka: Australia Japan Extractive Metallurgy Symp., Sydney, Australia, 1980.

  16. I.C. Smith and H.B. Bell: Trans. Inst. Min. Metall. (Sect. C), 1970, vol. 79(10), pp. C253-C258.

    Google Scholar 

  17. N. Sevinc: Trans. Inst. Min. Metall. (Sect. C), 1989, vol. 98, pp. C185-C189.

    Google Scholar 

  18. R. Schumann: Acta Metall., 1955, vol. 3, pp. 219–26.

    Article  Google Scholar 

  19. P. Deines, R.H. Nafziger, G.C. Ulmer, and E. Woermann: Bulletin of the Earth and Mineral Sciences Experiment Station, The Pennsylvania State University, University Park, PA, 1974, No. 88.

    Google Scholar 

  20. I. Barin: Thermochemical Data of Pure Substances, VCH Verlagsgesellschaft mbH, Weinheim, 1989, Part 2.

    Google Scholar 

  21. R.W. Taylor: J. Am. Ceram. Soc., 1963, vol. 46(6), pp. 276–79.

    Article  CAS  Google Scholar 

  22. D. Krajewski: Master’s Dissertation, Institut fur Kristallographie, RWTH-Aachen, 1992.

    Google Scholar 

  23. I.C. Smith and H.B. Bell: Trans. Inst. Mining Metall., (Sect. C), 1971, vol. 80, pp. C55–59.

    CAS  Google Scholar 

  24. M. Nagamori, K. Ito, and M. Tokuda: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 703–11.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pesl, J., Hurman Eriç, R. High-temperature phase relations and thermodynamics in the iron-titanium-oxygen system. Metall Mater Trans B 30, 695–705 (1999). https://doi.org/10.1007/s11663-999-0031-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-999-0031-8

Keywords

Navigation