Skip to main content
Log in

Experimental and mathematical investigation of the fluid flow inside and below a 1/4 scale air model of a flash smelting burner

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Single-phase turbulent fluid flow inside and below a burner model was studied to better understand the fluid flow processes occurring inside and below flash smelting burners. The effect of Reynolds number and temperature on the axial velocity profiles in a 1/4 scale experimental air model of a jet flow burner and shaft were investigated. Laser Doppler anemometry (LDA) was used to determine the mean and fluctuating axial velocity components within and below this burner. Also experimentally determined were the pressure profiles along the length of the burner and shaft and the inlet air and wall temperature profiles. In the experiments, the Reynolds number range was approximately 60,600 to 76,100, which was in the turbulent flow regime. A mathematical model was used to simulate axisymmetric two-dimensional air flow through a jet flow burner and shaft for Reynolds numbers of 60,000 to 304,000. The axial velocity predictions of the high axial velocity region and surrounding region in the shaft were in reasonable agreement with the axial velocity experimental results. Recommendations are made for the improvement of the design of flash smelting burners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.D. Šutalo, J.A. Harris, F.R.A. Jorgensen, and N.B. Gray: Metallurgical Processes for Early Twenty-First Century, H.Y. Sohn, ed., TMS, San Diego, CA, 1994, pp. 823–39.

    Google Scholar 

  2. I.D. Šutalo, J.A. Harris, F.R.A. Jorgensen, and N.B. Gray: Metall. Trans. B, 1998, vol. 29B, pp. 773–84.

    Google Scholar 

  3. J.G. Dunn, and T.N. Smith: WA Mining and Petroleum Research Institute, Report No. 7, WAMPRI, Perth, Australia, 1984.

    Google Scholar 

  4. H. Tanemura, Y. Fukunaka, T. Shimada, T. Nishihara, and Y. Kondo: Scand. J. Metall., 1989, vol. 18, pp. 99–104.

    CAS  Google Scholar 

  5. T.W. Gonzales and D.M. Jones: The Paul E. Queneau Int. Symp. Extractive Metallurgy of Copper, Nickel and Cobalt, C.A. Landolt, ed., TMS, Warrendale, PA, 1993, pp. 1395–1407.

    Google Scholar 

  6. T. Kimura, Y. Ojima, Y. Mori, and Y. Ishii: The Reinhardt Schuhmann Int. Symp. on Innovative Technology and Reactor Design in Extraction Metallurgy, D.R. Gaskell, J.P. Hager, J.E. Hoffman, and P.J. Mackey, eds., TMS-AIME, Warrendale, PA, 1986, pp. 403–18.

    Google Scholar 

  7. F.R.A. Jorgensen and E.R. Segnit: Proc. Aus. Inst. Min. Metall., 1977, No. 261, pp. 39–46.

  8. F.R.A. Jorgensen: Proc. Aus. Inst. Min. Metall., 1983, No. 288, pp. 37–46.

  9. P.C. Chaubal: Ph.D. Thesis, University of Utah, Salt Lake City, UT, 1986.

    Google Scholar 

  10. H.Y. Sohn and P.C. Chaubal: The Paul E. Queneau Int. Symp. Extractive Metallurgy of Copper, Nickel and Cobalt, C.A. Landolt, ed., TMS, Warrendale, PA, 1993, pp. 537–65.

    Google Scholar 

  11. N.J. Themelis and H.H. Kellogg: Proc. 1983 Int. Sulfide Smelting Symp. and the 1983 Extractive and Process Metallurgy Meeting of the TMS-AIME, TMS-AIME, Warrendale, PA, 1983, pp. 1–29.

    Google Scholar 

  12. Y.H. Kim: Ph.D. Thesis, Columbia University, New York, NY, 1987.

    Google Scholar 

  13. Y.H. Kim and N.J. Themelis: The Reinhardt Schuhmann Int. Symp. on Innovative Technology and Reactor Design in Extraction Metallurgy, D.R. Gaskell, J.P. Hager, J.E. Hoffmann, and P.J. Mackey, eds., TMS-AIME, Warrendale, PA, 1986, pp. 349–69.

    Google Scholar 

  14. N.D.H. Munroe: Ph.D. Thesis, Columbia University, New York, NY, 1987.

    Google Scholar 

  15. N.D.H. Munroe and N.J. Themelis: Pyrometallurgy of Copper, Proc. Copper 91–Cobre 91 Int. Symp., C. Diaz, C. Landolt, A. Luraschi, and C.J. Newman, eds., Pergamon Press, Elmsford, NY, 1991, pp. 475–94.

    Google Scholar 

  16. A.Y. Vartianen, P.A. Taskinen, and A.T. Jokilaakso: H.H. Kellogg Int. Symp. Quantitative Description of Metal Extraction Processes, N.J. Themelis and P.F. Duby, eds., TMS, Warrendale, PA, 1991, pp. 45–63.

    Google Scholar 

  17. A. Warczok, T. Utigard, W. Mroz, J. Kowalczyk, M. Warmuz, and St. Musial: Pyrometallurgy of Copper, Proc. Copper 91–Cobre 91 Int. Symp., C. Diaz, C. Landolt, A. Luraschi, and C.J. Newman, eds., Pergamon Press, Elmsford, NY, 1991, pp. 637–50.

    Google Scholar 

  18. Y. Fukunaka, S. Nakashita, Z. Asaki, and Y. Kondo: World Mining and Metals Technology, A. Weiss, ed., AIME, New York, NY, 1976, pp. 481–504.

    Google Scholar 

  19. S. Ruottu: Combustion Flame, 1979, vol. 34, pp. 1–11.

    Article  CAS  Google Scholar 

  20. Y.B. Hahn: Ph.D. Thesis, University of Utah, Salt Lake City, UT, 1988.

    Google Scholar 

  21. Y.B. Hahn and H.Y. Sohn: Metall. Trans. B, 1988, vol. 19B, pp. 871–84.

    CAS  Google Scholar 

  22. Y.B. Hahn and H.Y. Sohn: Metall. Trans. B, 1990, vol. 21B, pp. 945–58.

    CAS  Google Scholar 

  23. Y.B. Hahn and H.Y. Sohn: Metall. Trans. B, 1990, vol. 21B, pp. 959–66.

    CAS  Google Scholar 

  24. P.T.L. Koh: CHEMECA ’91, Newcastle, Australia, Institution of Engineers (I.E. Aust.), Parkville, Melbourne, Australia, 1991, pp. 616–23.

    Google Scholar 

  25. P.T.L. Koh: CHEMECA ’92, Canberra, Australia, Institution of Engineers (I.E. Aust.), Parkville, Melbourne, Australia, 1992, pp. 487–94.

    Google Scholar 

  26. P.T.L. Koh and R.N. Taylor: Proc. Extractive Metallurgy of Gold and Base Metals Conf., Kalgoorlie, Australia, V.N. Misra, D. Halbe, and D.J. Spottiswood, eds., The Australasian Institute of Mining & Metallurgy (Aus IMM), Clunies Ross House, Parkville, Melbourne, Australia, 1992, pp. 407–11.

    Google Scholar 

  27. P.T.L. Koh: APCChE & CHEMECA ’93, Melbourne, Australia, Institution of Engineers (I.E. Aust.), Parkville, Melbourne, Australia, 1993, pp. 323–27.

    Google Scholar 

  28. P.T.L. Koh and F.R.A. Jorgensen: CHEMECA ’94, Perth, Australia, Institution of Engineers (I.E. Aust.), Parkville, Melbourne, Australia, 1994, pp. 499–506.

    Google Scholar 

  29. B.J. Elliot, F.R.A. Jorgensen, and N. Kemori: Metallurgical Processes for Early Twenty-First Century, H.Y. Sohn, ed., TMS, San Diego, CA, 1994, pp. 943–62.

    Google Scholar 

  30. A.T. Jokilaakso, T. Ahokainen, Y. Yang, O. Teppo, K. Riihilahti, and J. Tuominen: Metallurgical Processes for Early Twenty-First Century, H.Y. Sohn, ed., TMS, San Diego, CA, 1994, pp. 841–58.

    Google Scholar 

  31. I.D. Šutalo: Ph.D. Thesis, The University of Melbourne, Melbourne, Australia, 1996.

    Google Scholar 

  32. T.V. Nguyen, R.N. Taylor, and T.P. Hall: Proc. Extractive Metallurgy of Gold and Base Metals Conf., V.N. Misra, D. Halbe, and D.J. Spottiswood, eds., Kalgoorlie, Australia, The Australiasian Institute of Mining & Metallurgy (Aus IMM), Clunies Ross House, Parkville, Melbourne, Australia, 1992, pp. 401–06.

    Google Scholar 

  33. T.V. Nguyen, P.T.L. Koh, and S.R. Varnas: Proc., Extractive Metallurgy of Gold and Base Metals Conf., V.N. Misra, D. Halbe, and D.J. Spottiswood, eds., Kalgoorlie, Australia, The Australasian Institute of Mining & Metallurgy (Aus IMM), Clunies Ress House, Parkville, Melbourne, Australia, 1992, pp. 413–19.

    Google Scholar 

  34. Q. Jiao, L. Wu, and N.J. Themelis: Mathematical Modelling of Materials Processing Operations, J. Szekely, L.B. Hales, H. Henein, N. Jarrett, K. Rajamani, and I. Samarasekera, eds., TMS-AIME, Warrendale, PA, 1987, pp. 835–58.

    Google Scholar 

  35. A.A. Shook: Ph.D. Thesis, The University of British Columbia, Vancouver, BC, Canada, 1992.

    Google Scholar 

  36. F. Durst, A. Melling, and J.H. Whitelaw: Principles and Practice of Laser-Doppler Anemometry, 2nd ed., Academic Press, New York, NY, 1981.

    Google Scholar 

  37. B.E. Launder and D.B. Spalding: Computer Methods Appl. Mech. Eng., 1974, vol. 3, pp. 269–89.

    Article  Google Scholar 

  38. J.O. Hinze: Turbulence, McGraw-Hill, New York, NY, 1959.

    Google Scholar 

  39. J.P. Van Doormaal and G.D. Raithby: Num. Heat Transfer, 1984, vol. 7, pp. 147–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šutalo, I.D., Jorgensen, F.R.A. & Gray, N.B. Experimental and mathematical investigation of the fluid flow inside and below a 1/4 scale air model of a flash smelting burner. Metall Mater Trans B 29, 993–1006 (1998). https://doi.org/10.1007/s11663-998-0068-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-998-0068-0

Keywords

Navigation