Skip to main content
Log in

Evaluation of nickel flash smelting through piloting and simulation

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

An extensive study of the nickel flash smelting process has been undertaken. It is aimed at the optimization of the burner design to improve the smelting performance and to increase the throughput of the rebuilt furnace. A design-based mathematical model was developed to simulate the operation of the four burners and the reaction shaft of the flash furnace at Western Mining Corporation Ltd.’s Kalgoorlie Nickel Smelter. A modified single burner version of the model was validated against data obtained from the pilot plant at the Pyrometallurgical Research Centre (PRC) of the Sumitomo Metal Mining Co.’s Toyo Smelter. The approach taken involved experimental measurements of key process parameters in the pilot plant and detailed numerical simulation of the fluid flow, heat transfer, and combustion in the entire burner-shaft complex. Several burner designs have been tested experimentally at the pilot plant and theoretically through computer simulation. The main outcome of the study was the development of an experimentally validated mathematical model of the flash smelter providing a new powerful design tool. The insight gained about the process from the application of this tool led to the design of a more efficient nickel flash smelting process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.J. Elliot, F.R.A. Jorgensen, and N. Kemori: Metallurgical Processes for the Early Twenty-First Century: Proc. 2nd Int. Symp. on Metallurgical Processes for the Year 2000 and Beyond and the 1994 TMS Extraction and Process Metallurgy Meeting, San Diego, CA, Sept. 20–23, 1994, H.Y. Sohn, ed., TMS, Warrendale, PA, 1994, vol. II, pp. 943–62.

    Google Scholar 

  2. T.V. Nguyen, P.T.L. Koh, and S.R. Varnas: Proc. Int. Conf. on Extractive Metallurgy of Gold and Base Metals, Kalgoorlie, Western Australia, Oct. 1992, V.N. Misra, D. Halbe, and D.J. Spottiswood, eds. The Australasian Institute of Mining and Metallurgy, Parkville, Victoria, Australia, 1992, pp. 413–19.

    Google Scholar 

  3. F.R.A. Jorgensen, B.J. Elliot, P.T.L. Koh, and T.V. Nguyen: Flash Reaction Processes: Proc. NATO Advanced Research Workshop on Flash Reaction Processes, Istanbul, Turkey, May 6–8, 1994, T.W. Davies, ed., Kluwer Academic, Dordrecht, Holland, 1994, pp. 201–38.

    Google Scholar 

  4. N. Kemori, Y. Shibata, and K. Fukushima: J. Met., 1985, vol. 5, pp. 24–29.

    Google Scholar 

  5. N. Kemori, W.T. Denholm, and H. Kurokawa: Metall. Trans. B, 1989, vol. 20B, pp. 327–36.

    CAS  Google Scholar 

  6. M.M. Baum and P.J. Street: Combust. Sci. Technol., 1971, vol. 3, p. 231.

    CAS  Google Scholar 

  7. L.D. Smoot and D.T. Pratt: Pulverized Coal Combustion and Gasification, Plenum Press, New York, NY, 1979.

    Google Scholar 

  8. Y.B. Hahn and H.Y. Sohn: Metall. Trans. B, 1990, vol. 21B, pp. 945–58.

    CAS  Google Scholar 

  9. Y.B. Hahn and H.Y Sohn: Metall. Trans. B, 1990, vol. 21, pp. 959–66.

    Google Scholar 

  10. D.B. Spalding: Mathematical Modelling of Fluid Flow, Heat Transfer and Chemical Reaction Processes: A Lecture Course, Imperial College of Science and Technology, London, England, 1980.

    Google Scholar 

  11. J. Moffatt and K. Pericleous: Proc. 3rd Int. PHOENICS User Conf., Dubrovnik, Aug. 1989, CHAM Ltd., Wimbledon, U.K., pp. 21–40.

  12. W.K. Melville and K.N.C. Bray: Int. J. Heat Mass Transfer, 1991, vol. 22, pp. 647–56.

    Article  Google Scholar 

  13. B.E. Launder and D.B. Spalding: Comp. Methods Appl. Mech. Eng., 1974, vol. 3, pp. 269–89.

    Article  Google Scholar 

  14. B.E. Launder and D.B. Spalding: Mathematical Models of Turbulence, Academic Press, London, 1972.

    Google Scholar 

  15. R. Clift and W.H. Gauvin: CHEMECA 70, Melbourne, 1970, IE Aust (Institute of Engineers Australia), Melbourne, Australia, pp. 14–28.

    Google Scholar 

  16. P.T.L. Koh: CHEMECA 92, Canberra, Sept. 1992, IE Aust (Institute of Engineers Australia), Melbourne, Australia, vol. 2, pp. 487–94.

    Google Scholar 

  17. D. Migdal and V.D. Agosta: J. Appl. Mech., 1967, vol. 35 (4), p. 860.

    Google Scholar 

  18. C.T. Crowe, M.P. Sharma, and D.E. Stock: ASME Trans. J. Fluids Eng., 1977, vol. 99, pp. 325–32.

    Google Scholar 

  19. P.T.L. Koh and F.R.A. Jorgensen: CHEMECA 94, Perth, Sept. 1994, IE Aust (Institute of Engineers Australia), Melbourne, Australia, pp. 499–506.

    Google Scholar 

  20. B.J. Elliot: private communication, Kalgoorlie Nickel Smelter, Western Mining Corporation, 1994.

  21. A.S. Eddington: Mon. Not. R. Astron. Soc., 1916, vol. 77, p. 16.

    Google Scholar 

  22. J.H. Jeans: Mon. Not. R. Astron. Soc., 1917, vol. 78, p. 28.

    Google Scholar 

  23. S.R. Varnas and J.S. Truelove: Appl. Math. Modelling, 1995, vol. 19, pp. 456–64.

    Article  Google Scholar 

  24. S. Ruottu: Combust. Flame, 1979, vol. 34, pp. 1–11.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varnas, S.R., Koh, P.T.L. & Kemori, N. Evaluation of nickel flash smelting through piloting and simulation. Metall Mater Trans B 29, 1329–1343 (1998). https://doi.org/10.1007/s11663-998-0057-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-998-0057-3

Keywords

Navigation