Skip to main content
Log in

A flame process for synthesis of unagglomerated, low-oxygen nanoparticles: Application to Ti and TiB2

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A gas-phase flame process for synthesizing unagglomerated nanoparticles of metals, intermetallics, ceramics, and composites is described. Employing this process, titanium and titanium boride have been synthesized by the vapor-phase reaction of sodium with titanium tetrachloride and a 1:2 mixture of titanium tetrachloride and boron trichloride, respectively. To minimize agglomeration and protect the particles from postflame oxidation, the NaCl by-product is allowed to condense onto the particles in situ, yielding NaCl-encapsulated particles. In this way, stable, unagglomerated Ti and TiB2 nanoparticles have been produced and the encapsulated powders have been handled in air without oxidation. Particle size has also been varied with the encapsulation process, and titanium particles with mean sizes of 10 and 60 nm have been produced by varying operating conditions. The NaCl has been removed by water washing as well as vacuum annealing. Thermodynamic results show that the sodium/halide process is applicable for synthesis of many materials, with yields approaching 100 pct under a wide range of operating conditions. Similarly, the encapsulation process is generally applicable, making the sodium/halide flame and encapsulation process a viable one for large-scale synthesis of environmentally insensitive nanopowders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Gurav, T. Kodas, T. Pluym, and Y. Xiong: Aerosol Sci. Technol., 1993, vol. 19, pp. 411–52.

    CAS  Google Scholar 

  2. G.D. Ulrich: Chem. Eng. News, 1984, vol. 62 (32) pp. 22–29.

    CAS  Google Scholar 

  3. G.W. Kriechbaum and P. Kleinschmit: Angew. Chem. Adv. Mater., 1989, vol. 101, p. 1446.

    CAS  Google Scholar 

  4. C.M. Megaridis and R.A. Dobbins: Combust. Sci. Technol., 1990, vol. 71, pp. 95–109.

    CAS  Google Scholar 

  5. S.M.L. Sastry, T.C. Peng, and R.J. Lederich: in Mechanical Behavior of Rapidly Solidified Materials, S.M.L. Sastry and B.A. MacDonald, eds., AIME, Warrendale, PA, 1986, p. 207.

    Google Scholar 

  6. H.F. Calcote and W. Felder: 24th Int. Symp. on Combustion, The Combustion Institute, Pittsburgh, PA, 1992, pp. 1869–76.

    Google Scholar 

  7. I. Glassman, K.A. Davis, and K. Brezinsky: 24th Int. Symp. on Combustion, The Combustion Institute, Pittsburgh, PA, 1992, pp. 1877–82.

    Google Scholar 

  8. R.L. Axelbaum, S.E. Bates, W.E. Buhro, C.A. Frey, K.F. Kelton, S.A. Lawton, L.J. Rosen, and S.M.L. Sastry: Nanostr. Mater., 1993, vol. 2 (2) pp. 139–47.

    Article  CAS  Google Scholar 

  9. R.L. Axelbaum, D.P. DuFaux, and L.J. Rosen: “Method and Apparatus for Producing High Purity and Unagglomerated Submicron Particles,” U.S. Patent No. 5,489,446, Mar. 12, 1996.

  10. R.L. Axelbaum, D.P. DuFaux, C.A. Frey, K.F. Kelton, S.A. Lawton, and S.M.L. Sastry: J. Mater. Res., 1996, vol. 11 (4), pp. 948–54.

    CAS  Google Scholar 

  11. D.P. DuFaux and R.L. Axelbaum: Combust. Flame, 1995, vol. 100, pp. 350–58.

    Article  CAS  Google Scholar 

  12. R.W. Siegel: Ann. Rev. Mater. Sci., 1991, vol. 21 pp. 559–78.

    Article  CAS  Google Scholar 

  13. Y. Xiong, S.E. Pratsinis, and S.V.R. Mastrangelo: J. Colloid Interface Sci., 1992, vol. 153 (1), pp. 106–17.

    Article  CAS  Google Scholar 

  14. M.R. Zachariah and P. Dimitriou: Aerosol Sci. Technol., 1990, vol. 13, pp. 413–25.

    CAS  Google Scholar 

  15. Alkali Halide Vapors, Structure, Spectra, and Reaction Dynamics, P. Davidovits and D.L. McFadden, eds., Academic Press, New York, NY, 1979.

    Google Scholar 

  16. W.C. Reynolds: STANJAN-Interactive Computer Programs for Chemical Equilibrium Analysis, Stanford University, Stanford, CA, 1987.

    Google Scholar 

  17. J.H. Seinfeld: Atmospheric Chemistry and Physics of Air Pollution, John Wiley, New York, NY, 1986, pp. 343–84.

    Google Scholar 

  18. R.L. Axelbaum, C.R. Lottes, J.I. Huertas, and L.J. Rosen: 26th Int. Symp. on Combustion, The Combustion Institute, Pittsburgh, PA, 1996, pp. 1891–97.

    Google Scholar 

  19. R.A. Dobbins and C.M. Megaridis: Langmuir, 1987, vol. 3 (2) pp. 254–59.

    Article  CAS  Google Scholar 

  20. D.E. Rosner, D.W. Mackowski, and P. Garcia-Ybarra: Combust. Sci. Technol., 1991, vol. 80, pp. 87–101.

    CAS  Google Scholar 

  21. J. Du and R.L. Axelbaum: Combust. Flame, 1995, vol. 100, pp. 367–75.

    Article  CAS  Google Scholar 

  22. C.A. Frey, S.M.L. Sastry, D.P. DuFaux, K.F. Kelton, and R.L. Axelbaum: unpublished research.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Axelbaum, R.L., Sastry, S.M.L., Dufaux, D.P. et al. A flame process for synthesis of unagglomerated, low-oxygen nanoparticles: Application to Ti and TiB2 . Metall Mater Trans B 28, 1199–1211 (1997). https://doi.org/10.1007/s11663-997-0076-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-997-0076-5

Keywords

Navigation