Skip to main content
Log in

Local Influences of Transient Basicity Segregation in Iron-Bearing Materials on Softening and Melting in Blast Furnaces at High Temperatures

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The distribution of iron-bearing granular materials in the throat of a blast furnace (BF) plays a crucial role in influencing their performance at high temperatures. Therefore, it is essential to establish a quantitative relationship between the charging operation of the iron-bearing materials at ambient temperatures and their subsequent softening and melting behaviors at elevated temperatures. In this study, the discrete element method (DEM) is employed to quantify the instantaneous mass segregation of quaternary iron-bearing materials throughout the continuous charging process, starting from the feeding conveyor belt and continuing up to the throat. Subsequently, employing quaternary basicity (R4) as a pivotal bridge, softening and melting experiments (the temperature above 900 °C and in an atmosphere with a mole fraction of 30 pct CO to 70 pct N2) are conducted to assess the influence of physical segregation on chemical performances under simulated BF conditions. The results reveal that the sequence of loading quaternary iron-bearing materials onto the feeding belt causes fluctuations in R4, ranging from 1.08 to 1.75. Moreover, these fluctuations are propagated throughout the charging process, resulting in notable fluctuations in the mass fractions of iron-bearing materials and the R4 at the hopper outlet and the end of the chute. Therefore, the primary factor influencing the flowing characteristics of the granular materials is their distribution within the hopper. Then, the segregation in the throat is further characterized by the presence of two distinct R4 ranges (1.2 to 1.29, and 1.3 to 1.39) observed across a total of 48 equal-area blocks, and the significant difference between these two categories is determined by sinters. Besides, the influence of the R4 on softening and melting temperatures is quantitatively evaluated, resulting in a ‘w’-shaped temperature distribution from the center to the edge of the BF. Our findings provide evidence of the inadequacy of evaluating the softening and melting behaviors of iron-bearing materials solely based on their initial proportions in the structure of iron-bearing materials. Instead, a quantitative examination of the granular segregation in the throat, arising from the BF charging operation, is deemed essential to provide substantial support for well-designed elevated-temperature experiments. This approach enables a more comprehensive understanding of the intricate journey of iron-bearing materials in the BF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Proctor, K. Fehling, E. Shay, J. Wittenborn, J. Green, C. Avent, R. Bigham, M. Connolly, B. Lee, T. Shepker, and M. Zak: Environ. Sci. Technol., 2000, vol. 34, pp. 1576–82.

    Article  CAS  Google Scholar 

  2. Z. Liu, J. Zhang, H. Zuo, and T. Yang: ISIJ Int., 2012, vol. 52, pp. 1713–23.

    Article  CAS  Google Scholar 

  3. S. Kuang, Z. Li, and A. Yu: Steel Res. Int., 2018, vol. 89, p. 1700071.

    Article  Google Scholar 

  4. G. Wang, Z. Liao, Z. Hu, D. Wang, H. Bai, Z. Zou, and J. Xu: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 931–37.

    Article  Google Scholar 

  5. H. Mio, Y. Narita, S. Matsuzaki, K. Nishioka, and S. Nomura: Powder Technol., 2019, vol. 344, pp. 797–803.

    Article  CAS  Google Scholar 

  6. Y. Yu and H. Saxén: Chem. Eng. Sci., 2010, vol. 65, pp. 5237–50.

    Article  CAS  Google Scholar 

  7. C. Ho, S. Wu, H. Zhu, A. Yu, and S. Tsai: Miner. Eng., 2009, vol. 22, pp. 986–94.

    Article  CAS  Google Scholar 

  8. Y. Yu and H. Saxén: Steel Res. Int., 2013, vol. 10, pp. 1018–33.

    Article  Google Scholar 

  9. V. Radhakrishnan and K. Ram: J. Process. Control., 2001, vol. 11, pp. 565–86.

    Article  CAS  Google Scholar 

  10. L. Shi, G. Zhao, M. Li, and X. Ma: Appl. Math. Model., 2016, vol. 40, pp. 10254–73.

    Article  Google Scholar 

  11. H. Zhao, M. Zhu, P. Du, S. Taguchi, and H. Wei: ISIJ Int., 2012, vol. 52, pp. 2177–85.

    Article  CAS  Google Scholar 

  12. K. Zhou, Z. Jiang, D. Pan, W. Gui, and J. Huang: Steel Res. Int., 2022, vol. 93, p. 2100332.

    Article  CAS  Google Scholar 

  13. Y. Xu, J. Xu, Z. Liao, Y. Pei, L. Gao, C. Sun, M. Kou, and L. Wen, Powder Technol., 2019, vol. 343, pp. 422–35.

    Article  CAS  Google Scholar 

  14. H. Mio, M. Kadowaki, S. Matsuzaki, and K. Kunitomo: Miner. Eng., 2012, vol. 33, pp. 27–33.

    Article  CAS  Google Scholar 

  15. W. Xu, S. Cheng, and C. Li: Ironmak. Steelmak., 2022, vol. 49, pp. 208–16.

    Article  CAS  Google Scholar 

  16. W. Xu, S. Cheng, Q. Niu, and G. Zhao: ISIJ Int., 2017, vol. 57, pp. 1173–80.

    Article  CAS  Google Scholar 

  17. Z. Liao, J. Xu, C. Sun, Y. Yang, Y. Pei, M. Kou, Z. Hu, L. Meng, and L. Wen: Adv. Powder Technol., 2020, vol. 31, pp. 670–77.

    Article  Google Scholar 

  18. S. Wu, M. Kou, J. Xu, X. Guo, K. Du, W. Shen, and J. Sun: Chem. Eng. Sci., 2013, vol. 99, pp. 314–23.

    Article  CAS  Google Scholar 

  19. X. Huang, Q. Zheng, A. Yu, and W. Yan: Powder Technol., 2020, vol. 361, pp. 179–89.

    Article  CAS  Google Scholar 

  20. X. Huang, Q. Zheng, D. Liu, A. Yu, and W. Yan: Chem. Eng. Sci., 2022, vol. 253, p. 117579.

    Article  CAS  Google Scholar 

  21. J. Chen, H. Zuo, Y. Wang, Q. Xue, and J. Wang: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 3793–3804.

    Article  Google Scholar 

  22. Z. Hong, H. Zhou, J. Wu, L. Zhan, Y. Fan, Z. Zhang, S. Wu, H. Xu, L. Wang, and M. Kou: Steel Res. Int., 2021, vol. 92, p. 2000262.

    Article  CAS  Google Scholar 

  23. J. Chen, H. Zuo, H. Zhao, Q. Xue, and J. Wang: Powder Technol., 2022, vol. 409, p. 117845.

    Article  CAS  Google Scholar 

  24. J. Xu, S. Wu, M. Kou, L. Zhang, and X. Yu: Appl. Math. Model., 2011, vol. 35, pp. 1439–55.

    Article  Google Scholar 

  25. M. Kou, J. Xu, S. Wu, H. Zhou, K. Gu, S. Yao, and B. Wen: Particuology, 2019, vol. 44, pp. 194–206.

    Article  Google Scholar 

  26. B. Dai, J. Yang, F. Liu, X. Gu, and K. Lin: Powder Technol., 2020, vol. 363, pp. 611–20.

    Article  CAS  Google Scholar 

  27. S. Kumar, S. Khatoon, S. Parashar, P. Dubey, J. Yogi, and A. Anand: Powder Technol., 2023, vol. 427, p. 118682.

    Article  CAS  Google Scholar 

  28. Z. Deng, Y. Fan, J. Theuerkauf, K. Jacob, P. Umbanhowar, and R. Lueptow: Powder Technol., 2020, vol. 374, pp. 389–98.

    Article  CAS  Google Scholar 

  29. T. Zhang, J. Gan, A. Yu, D. Pinson, and Z. Zhou: Powder Technol., 2020, vol. 361, pp. 435–45.

    Article  CAS  Google Scholar 

  30. Y. Yang, C. Sun, Z. Liao, C. Leng, Z. You, and J. Xu: Powder Technol., 2022, vol. 411, p. 117954.

    Article  CAS  Google Scholar 

  31. C. Li, K. Dong, S. Liu, G. Chandratilleke, Z. Zhou, and Y. Shen: Powder Technol., 2022, vol. 407, p. 117660.

    Article  CAS  Google Scholar 

  32. W. Xu, S. Cheng, Q. Niu, and G. Zhao: Ironmak. Steelmak., 2017, vol. 46, pp. 105–12.

    Article  CAS  Google Scholar 

  33. L. Jiao, S. Kuang, A. Yu, Y. Li, X. Mao, and H. Xu: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 258–75.

    Article  Google Scholar 

  34. X. Dong, A. Yu, S. Chew, and P. Zulli: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 330–49.

    Article  CAS  Google Scholar 

  35. L. Jiao, S. Kuang, Y. Li, X. Mao, H. Xu, and A. Yu: Metall. Mater. Trans. B, 2023, vol. 54B, pp. 734–55.

    Article  Google Scholar 

  36. X. An, J. Wang, R. Lan, Y. Han, and Q. Xue: J. Iron. Steel Res. Int., 2013, vol. 20, pp. 11–16.

    Article  CAS  Google Scholar 

  37. P. Nogueira and R. Fruehan: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 829–38.

    Article  CAS  Google Scholar 

  38. P. Nogueira and R. Fruehan: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 583–90.

    Article  CAS  Google Scholar 

  39. P. Nogueira and R. Fruehan: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 551–58.

    Article  CAS  Google Scholar 

  40. B. Lyu, G. Wang, F. Yang, H. Zuo, Q. Xue, and J. Wang: J. Iron. Steel Res. Int., 2023, vol. 30, pp. 2366–77.

    Article  CAS  Google Scholar 

  41. P. Tan, J. Zhang, J. Huang, Y. Wang, Z. Liu, and F. Han: Chin. J. Eng., 2023, vol. 45, pp. 890–98.

    CAS  Google Scholar 

  42. T. Li, C. Sun, X. Liu, S. Song, and Q. Wang: Ironmak. Steelmak., 2018, vol. 45, pp. 755–63.

    Article  CAS  Google Scholar 

  43. F. Silva, L. Lemos, P. DeFreitasNogueira, and M. Bressan: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 69–76.

    Article  Google Scholar 

  44. C. Loo, L. Matthews, and D. O’dea: ISIJ Int., 2011, vol. 51, pp. 930–38.

    Article  CAS  Google Scholar 

  45. B. Lyu, G. Wang, L. Zhao, H. Zuo, Q. Xue, and J. Wang: J. Iron. Steel Res. Int., 2023, vol. 30, pp. 227–35.

    Article  CAS  Google Scholar 

  46. S. Wu, L. Wang, Y. Lu, and K. Gu: Steel Res. Int., 2018, vol. 89, p. 1800041.

    Article  Google Scholar 

  47. X. She, J. Wang, J. Liu, X. Zhang, and Q. Xue: ISIJ Int., 2014, vol. 54, pp. 2728–36.

    Article  CAS  Google Scholar 

  48. S. Wu, H. Han, H. Xu, H. Wang, and X. Liu: ISIJ Int., 2010, vol. 50, pp. 686–94.

    Article  CAS  Google Scholar 

  49. G. Park, Y. Kang, and J. Park: ISIJ Int., 2011, vol. 51, pp. 1375–82.

    Article  Google Scholar 

  50. P. Ma, K. Ma, J. Deng, Q. Wu, and J. Xu: ISIJ Int., 2023, vol. 63, pp. 1957–64.

    Article  CAS  Google Scholar 

  51. J. Deng, K. Ma, L. Hu, M. Kou, L. Wen, and J. Xu: Ceram. Int., 2020, vol. 46, pp. 11854–60.

    Article  CAS  Google Scholar 

  52. K. Ma, J. Xu, J. Deng, M. Kou, and L. Wen: Int. J. Hydrogen Energy, 2019, vol. 44, pp. 19555–62.

    Article  CAS  Google Scholar 

  53. K. Ma, J. Xu, J. Deng, D. Wang, Y. Xu, Z. Liao, C. Sun, S. Zhang, and L. Wen: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 2308–21.

    Article  Google Scholar 

  54. P. Cundall and O.L. Strack: Géotechnique, 1980, vol. 30, pp. 331–36.

    Article  Google Scholar 

  55. J. Xu, Z. Hu, Y. Xu, D. Wang, L. Wen, and C. Bai: Powder Technol., 2017, vol. 308, pp. 273–89.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding through projects from the Natural Science Foundation of Chongqing, China (Grant Nos. cstc2019jcyj-msxmX0089, cstc2021ycjh-bgzxm0165, cstb2023nscq-msx0514), and Galen scholarship.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Z., Wang, K., Yang, Y. et al. Local Influences of Transient Basicity Segregation in Iron-Bearing Materials on Softening and Melting in Blast Furnaces at High Temperatures. Metall Mater Trans B (2024). https://doi.org/10.1007/s11663-024-03121-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11663-024-03121-2

Navigation