Skip to main content
Log in

Dissolution Behavior of TiC Heterogeneous Nucleation Site Particles in Ti–6Al–4V in Electrostatic Levitation Method

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Clarifying the dissolution behavior of titanium carbide (TiC) during heating is crucial for establishing suitable heating conditions for prior-β grain refinement of Ti–6Al–4V induced by TiC particles. This study aims to reveal the effects of heating in the electrostatic levitation (ESL) experiments on the dissolution of TiC by establishing the dissolution kinetics of TiC in liquid Ti–6Al–4V. The sintered mixture of Ti–6Al–4V powder and TiC particles was melted and solidified in ESL. The integral value of heating, I (T, t), with the temperature and heating time serves as a valuable index of the amount of heating. The amount of residual TiC, MR, decreases exponentially with the increase of I (T, t), indicating the symmetry of the Johnson–Mehl–Avrami–Kolmogorov equation. A phase field simulation of TiC dissolution revealed that the dissolution time increases in proportion to the 1.8th power of the initial particle diameter. Additionally, the value of MR calculated using the dissolution equation based on the diffusion theory was consistent with the results of the ESL experiments at a diffusion coefficient, D, of about 1 – 3 × 10−11 m2 s−1, which is an intermediate value of D in multiple diffusion forms. The dissolution model also estimates the number of TiC particles which work as the nucleation sites (Active-TiC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

A TiC :

Area ratio of residual TiC (area pct)

A Ti-rich :

Area ratio of Ti-rich TiC (area pct)

a SL :

Anisotropy of the solid–liquid interface (m2)

B 1 :

Fitting parameter in Eq. [2] (s m−n)

B 2 :

Fitting parameter in Eq. [8] (mass pct)

B 3 :

Fitting parameter in Eq. [8] (K−2s1)

b :

Coefficient in the first term in Eq. [A1] (m−1)

C :

Concentration of carbon (mol pct)

C L :

Concentration of carbon in a liquid phase (mol pct)

C S :

Concentration of carbon in a solid phase (mol pct)

C I :

Concentration of carbon in a solid–liquid interface (mol pct)

\(D\) :

Diffusion coefficient (m2 s1)

D GB :

Diffusion coefficient at a grain boundary (m2 s1)

D L :

Diffusion coefficient in a liquid phase (m2 s1)

D S :

Diffusion coefficient in a solid phase (m2 s1)

d :

Diameter of carbon (m)

d 0 :

Initial diameter of carbon (m)

k :

Coefficient of concentration (−)

M R :

Amount of residual TiC (mass pct)

m C1 :

Mass of carbon in TiC (kg)

m C2 :

Mass of carbon in Ti-rich TiC (kg)

N a rea :

Number of grains per area (mm−2)

N act :

Number of Active-TiC

N R :

Number of residual TiC

N line :

Number of grains per length (mm−1)

N 2D :

Number of prior-β grains in a cross section of a sample

N 3D :

Number of prior-β grains in a sample

n :

Fitting parameter in Eq. [2] (−)

r :

Radius of TiC (m)

r 0 :

Initial radius of TiC (m)

R 2 :

Coefficients of determination (−)

R act :

Nucleation rate (pct)

T :

Temperature of a sample (K)

T M :

Liquidus temperature (K)

T β :

β-transus temperature (K)

t :

Heating time of TiC particles in liquid titanium or Ti–6Al–4V (s)

t C :

Converted a heating time from the value of TM and I (T, t) (s)

t d :

Dissolution time (s)

t M :

Measurement time of a sample temperature by pyrometer (s)

I (T, t):

Integral value of heating (K2 s)

V A :

Volume ratio of added TiC (vol pct)

V R :

Volume ratio of residual TiC (vol pct)

v smp :

Volume of a sample (m3)

W C :

Atomic weight of carbon (g mol1)

W Ti :

Atomic weight of titanium (g mol1)

x :

Distance from a solid phase to a liquid phase (m)

x C :

Distance from the center of carbon (m)

ΔG :

Volumetric driving force (J m3)

ΔT :

Degree of undercooling (K)

η :

Thickness of a solid–liquid interface (m)

φ:

Phase field function (−)

μ SL :

Interface mobility between the solid phase of carbon and liquid phase of titanium (m4 J1 s1)

ρ TiC :

Density of TiC (kg m3)

ρ Ti64 :

Density of Ti–6Al–4V (kg m3)

ρ Ti-rich :

Density of Ti-rich TiC (Ti0.67C0.33) (kg m3)

σ SL :

Anisotropic interfacial energy of the solid–liquid interface (J m2)

References

  1. I. Gurrappa: Mater. Charact., 2003, vol. 51, pp. 131–39.

    Article  CAS  Google Scholar 

  2. S. Liu and Y.C. Shin: Mater. Des., 2019, vol. 164, p. 107552.

    Article  CAS  Google Scholar 

  3. C. Chen, Y. Hao, X. Bai, J. Ni, S. Chung, F. Liu, and I. Lee: Mater. Des., 2019, vol. 175, p. 107824.

    Article  CAS  Google Scholar 

  4. A.A. Antonysamy, J. Meyer, and P.B. Prangnell: Mater. Charact., 2013, vol. 84, pp. 153–68.

    Article  CAS  Google Scholar 

  5. L. Bolzoni, M. Xia, and N.H. Babu: Sci. Rep., 2016, vol. 6, p. 39554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. L. Zhou, F. Gao, G.S. Peng, and N. Alba-Baena: J. Alloys Compd., 2016, vol. 689, pp. 401–07.

    Article  CAS  Google Scholar 

  7. A. Minagawa, S. Furuta, N. Omura, Y. Murakami, and M. Tsunekawa: J. JILM, 2021, vol. 71, pp. 409–14.

    Article  CAS  Google Scholar 

  8. Y. Watanabe, M. Mihara-Narita, and H. Sato: Mater. Trans., 2023, vol. 64, pp. 1083–97.

    Article  CAS  Google Scholar 

  9. D. Zhang, A. Prasad, M.J. Bermingham, C.J. Todaro, M.J. Benoit, M.N. Patel, D. Qiu, D.H. StJohn, M. Qian, and M.A. Easton: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 4341–59.

    Article  Google Scholar 

  10. Y. Watanabe, M. Sato, T. Chiba, H. Sato, N. Sato, and S. Nakano: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 1345–52.

    Article  Google Scholar 

  11. Y. Watanabe, S. Yamada, T. Chiba, H. Sato, S. Miura, K. Abe, and T. Kato: Materials, 2023, vol. 16, p. 5974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Y. Watanabe, M. Sato, T. Chiba, H. Sato, N. Sato, S. Nakano, and S. Suzuki: J. Jpn. Laser Process. Soc., 2019, vol. 26, pp. 46–50.

    Google Scholar 

  13. N. Date, S. Yamamoto, Y. Watanabe, H. Sato, S. Nakano, N. Sato, and S. Suzuki: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 3609–27.

    Article  Google Scholar 

  14. S. Yamamoto, N. Date, Y. Mori, S. Suzuki, Y. Watanabe, S. Nakano, and N. Sato: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 3174–85.

    Article  Google Scholar 

  15. C. Hanada, Y. Mabuchi, K. Kadoi, Y. Ueda, Y. Kushiya, H. Aoki, R. Saguchi, M. Yamada, H. Sato, Y. Watanabe, Y. Harada, S. Ozawa, S. Nakano, H. Oda, C. Koyama, T. Ishikawa, Y. Watanabe, and S. Suzuki: Metall. Mater. Trans. B (Accepted).

  16. T. Usui, S. Shiratori, K. Tanimoto, S. Ozawa, T. Ishikawa, S. Suzuki, H. Nagano, and K. Shimano: Int. J. Microgravity Sci. Appl., 2023, vol. 40, p. 400302.

    Google Scholar 

  17. T. Ishikawa, P. Paradis, J. Yu, Y. Arai, N. Koshikawa, and S. Yoda: JSTS, 2002, vol. 18, pp. 1_8-1_16.

  18. H. Tamaru, T. Ishikawa, J.T. Okada, Y. Nakamura, H. Ohkuma, S. Yukizono, Y. Sakai, and T. Takada: Int. J. Microgravity Sci. Appl., 2015, vol. 32, p. 320104.

    Google Scholar 

  19. T. Ishikawa, C. Koyama, H. Tamaru, H. Saruwatari, M. Ohshio, and Y. Nakamura: Int. J. Microgravity Sci. Appl., 2018, vol. 35, p. 350205.

    Google Scholar 

  20. Y. Mabuchi, H. Aoki, C. Hanada, Y. Ueda, K. Kadoi, Y. Kushiya, R. Saguchi, K. Yoneda, M. Yamada, H. Sato, Y. Watanabe, S. Ozawa, S. Nakano, C. Koyama, H. Oda, T. Ishikawa, Y. Watanabe, T. Shimaoka, and S. Suzuki: Int. J. Microgravity Sci. Appl., 2024, vol. 41, p. 410201.

    Google Scholar 

  21. G. Frohberg: Fluid Sciences and Materials Sciences in Space, 1st ed. Springer, Berlin, 1987, pp. 159–90.

    Google Scholar 

  22. T. Owadano: J. Jpn. Foundry Eng. Soc., 2000, vol. 72, pp. 323–27.

    CAS  Google Scholar 

  23. G. Wang, D.S. Xu, N. Ma, N. Zhou, E.J. Payton, R. Yang, M.J. Mills, and Y. Wang: Acta Mater., 2009, vol. 57, pp. 316–25.

    Article  CAS  Google Scholar 

  24. J. Fournier, E. Régnier, F. Faure, X.L. Goff, H.-P. Brau, E. Brackx, and O. Pinet: J. Non Cryst. Solids, 2018, vol. 481, pp. 248–53.

    Article  CAS  Google Scholar 

  25. Q. Zuo, F. Liu, L. Wang, C.F. Chen, and Z.H. Zhang: J. Mater. Sci., 2014, vol. 49, pp. 3066–79.

    Article  CAS  Google Scholar 

  26. M.J. Whelan: Met. Sci. J., 1969, vol. 3, pp. 95–97.

    Article  CAS  Google Scholar 

  27. J. Fournier, E. Régnier, F. Faure, X.L. Goff, H.-P. Brau, E. Brackx, and O. Pinet: J. Non Cryst. Solids, 2018, vol. 489, pp. 77–83.

    Article  CAS  Google Scholar 

  28. P. Ferro: Acta Mater., 2013, vol. 61, pp. 3141–47.

    Article  CAS  Google Scholar 

  29. C. Hanada, H. Aoki, Y. Ueda, K. Kadoi, Y. Mabuchi, K. Yoneda, M. Yamada, H. Sato, Y. Watanabe, Y. Harada, S. Ozawa, S. Nakano, C. Koyama, H. Oda, T. Ishikawa, Y. Watanabe, T. Shimaoka, and S. Suzuki: Int. J. Microgravity Sci. Appl., 2023, vol. 40, p. 400301.

    Google Scholar 

  30. C. Mayer-Laigle, C. Gatumel, and H. Berthiaux: Chem. Eng. Res. Des., 2015, vol. 95, pp. 248–61.

    Article  CAS  Google Scholar 

  31. T. Ishikawa, Y. Ito, J.T. Okada, P. Paradis, Y. Watanabe, and T. Masaki: Meas. Sci. Technol., 2012, vol. 23, p. 125602.

    Article  Google Scholar 

  32. T. Ishikawa, C. Koyama, Y. Nakata, Y. Watanabe, and P. Paradis: J. Chem. Thermodyn., 2021, vol. 163, p. 106598.

    Article  CAS  Google Scholar 

  33. W. Rhim, S.K. Chung, D. Barber, K.F. Man, G. Gutt, A. Rulison, and R.E. Spjut: Rev. Sci. Instrum., 1993, vol. 64, pp. 2961–70.

    Article  CAS  Google Scholar 

  34. Y. Mabuchi, C. Hanada, Y. Ueda, K. Kadoi, H. Aoki, R. Saguchi, M. Yamada, H. Sato, Y. Watanabe, S. Ozawa, S. Shiratori, S. Nakano, C. Koyama, H. Oda, T. Ishikawa, Y. Watanabe, and S. Suzuki: Int. J. Microgravity Sci. Appl., 2024, vol. 41, p. 410101.

    Google Scholar 

  35. R. Dąbrowski: Arch. Metall. Mater., 2011, vol. 56, pp. 702–07.

    Google Scholar 

  36. T. Majumdar, T. Bazin, E.M.C. Ribeiro, J.E. Frith, and N. Birbilis: PLoS ONE, 2019, vol. 14, p. e0221198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. C. Ranger, V. Tari, S. Farjami, M.J. Merwin, L. Germain, and A. Rollett: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 4521–35.

    Article  Google Scholar 

  38. W.G. Burgers: Physica, 1934, vol. 1, pp. 561–86.

    Article  CAS  Google Scholar 

  39. R. Becker: Ann. Phys., 1938, vol. 424, pp. 128–40.

    Article  Google Scholar 

  40. T. Kunitake: J. Jpn. I. Met. Mater., 1964, vol. 3, pp. 466–76.

    Google Scholar 

  41. D.K. Deardorff and E.T. Hayes: JOM, 1956, vol. 8, pp. 509–10.

    Article  CAS  Google Scholar 

  42. H. Holleck: J. Vac. Sci. Technol. A, 1986, vol. 4, pp. 2661–69.

    Article  CAS  Google Scholar 

  43. B. Vandenbroucke and J. Kruth: Rapid Prototyping J., 2007, vol. 13, pp. 196–203.

    Article  Google Scholar 

  44. J.C. Fernandes, C. Anjinho, P.M. Amaral, L.G. Rosa, J. Rodríguez, D. Martínez, F.A.C. Oliveira, and N. Shohoji: Mater. Chem. Phys., 2003, vol. 77, pp. 711–18.

  45. A.B. Patel and H. Sheng: Phys. Rev. B, 2020, vol. 102, p. 064101.

    Article  CAS  Google Scholar 

  46. S. Sarian: J. Appl. Phys., 2003, vol. 39, pp. 3305–10.

    Article  Google Scholar 

  47. S. Nishikawa and K. Umezu: J. IIS, 1973, vol. 25, pp. 162–64.

    Google Scholar 

  48. E.E. Underwood: Quantitative Stereology, 1st ed. Addison-Wesley, Boston, 1970, pp. 80–108.

    Google Scholar 

  49. Micress Docs. 7.2 (Access e.V., Aachen, Germany), https://docs.micress.rwth-aachen.de/7.2/index.html. Accessed 11 Mar 2024.

Download references

Acknowledgments

This study was performed under the preliminary experiments of Hetero-3D mission, using Japanese Experiment Module, “Kibo,” on the ISS. This work consisted the result of using research equipment (G1001, G1011, G1012, G1017, G1020, G1054, and G1055) with the help of the Joint Research Center for Environmentally Conscious Technologies in Materials Science, Kagami Memorial Research Institute for Materials Science and Technology, Waseda University (JPMXP0723833151). The work done at Nagoya Institute of Technology (NITech) was supported by Adaptable and Seamless Technology Transfer Program through Target-driven R&D (A-STEP) from Japan Science and Technology Agency (JST) Grant Number JPMJTR23R3. Furthermore, we would like to thank Kimura Foundry Co., Ltd. for the financial support.

Conflict of interest

The authors declared that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Mabuchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The interfacial movement of solid carbon in liquid titanium was calculated using a phase field software MICRESS® (Version 7.01, Access e.V.) to simulate the dissolution behavior of TiC (Section II–D). In the phase field simulation, the interface movement can be analyzed continuously by using the phase field function, \(\varphi \). In this study, \(\varphi \) was defined as the solid phase fraction, with \(\varphi \) = 1 indicating 100 pct solid phase and \(\varphi \) = 0 indicating 100 pct liquid phase of carbon. The phase field equation implemented in MICRESS software reads as follows[49]:

$$\frac{\partial \varphi }{\partial t}=\sum {\mu }_{{\text{SL}}}\left\{b\Delta G-{a}_{{\text{SL}}}{\sigma }_{{\text{SL}}}\right\} .$$
(A1)

An interface mobility between the solid phase of carbon and the liquid phase of titanium, \({\mu }_{{\text{SL}}}\), is related to the kinetic coefficient. As shown in Eq. [A1], the distribution of \(\varphi \) was calculated so that the volumetric driving force, \(\Delta G\), decreased to a minimum value and stabilized at the earliest possible time. Generally, the solid phase changes to the liquid phase above TM because the liquid phase is stable whose \(\Delta {G}_{{\text{SL}}}\) is lower than that of the solid phase. The coefficient in the first term in Eq. [A1], \(b\), is defined as follows[49]:

$$b=\frac{\pi }{\eta }\sqrt{\varphi (1-\varphi )},$$
(A2)

where \(\eta \) represents the thickness of the interface. In the second term of Eq. [A1], \({\sigma }_{{\text{SL}}}\) and \({a}_{{\text{SL}}}\) represent the anisotropic interfacial energy and anisotropy of the solid–liquid interface, respectively.

The value of \(\varphi \) in this study was calculated by coupling the differential equation of Eq. [A1] with the diffusion equation by using MICRESS®. Some parameters such as \(\Delta G\) were referred to a thermodynamic database acquired using Thermo-Calc® from the CALPHAD database. The temperature was maintained above TM of titanium. Therefore, carbon was found to be more stable in the liquid phase, leading to dissolution as shown in Section III–C.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mabuchi, Y., Hanada, C., Aoki, H. et al. Dissolution Behavior of TiC Heterogeneous Nucleation Site Particles in Ti–6Al–4V in Electrostatic Levitation Method. Metall Mater Trans B 55, 2467–2484 (2024). https://doi.org/10.1007/s11663-024-03108-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-024-03108-z

Navigation