Skip to main content
Log in

Measuring Dynamic Nonreactive Wetting Behavior Between Interstitial-Free Molten Steel and Alumina

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

An improved sessile drop method was used to measure the dynamic nonreactive wetting behavior of different titanium concentrations interstitial-free molten steel on an alumina substrate at 1550 ºC, and the interfacial tension was also calculated by Young’ equation based on the measured surface tension and the static contact angle compared to the previous sessile drop method. And the discrepancies were investigated by analyzing the interface layer between the melt and the alumina substrate with different oxygen partial pressures. Furthermore, it was discussed for the forces analysis of the dynamic contact angle for the improved sessile drop method and the interface layer reactive for the improved sessile drop method. The results demonstrate that the advancing angle, receding and static contact angles between the flowing melt and the solid substrate were quickly obtained by the improved sessile drop method. And the interfacial tension between molten steel and alumina substrate, which is 1428.71 and 1221.35 mN/m, respectively, with titanium concentrations of 280 ppm and 540 ppm for the improved sessile drop method, is higher than for the previous sessile drop method, which is 1245.56 and 719.01 mN/m, respectively. The low alloy interstitial-free molten steel and alumina substrate had formed an interface layer for the previous sessile drop method, and the thickness of the interface layer increased from 3.5 to 77.8 μm with a titanium concentration of 540 ppm as the oxygen partial pressure increased from 5.4 × 10−23 to 5.4 × 10−19 atm. The interface layer, which is composed of alloy compounds such as silicon, manganese and titanium oxides, is sensitive to the active alloy of interstitial-free molten steel and oxygen partial pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D.X. Yin, M.A. Pei-Sheng, and S.Q. Xia: Bull. Sci. Technol., 2007, vol. 23, pp. 424–29.

    Google Scholar 

  2. A.A. Amadeh, J.C. Labbe, and P.E. Quintard: J. Eur. Ceram. Soc., 2005, vol. 25, pp. 1041–48.

    Article  CAS  Google Scholar 

  3. H. Ohba and K. Sugita: J. Ceram. Soc. Jpn., 1963, vol. 71, pp. 207–13.

    Google Scholar 

  4. J. Kurikkala, O. Mattila, T. Fabritius, and J. Härkki: ISIJ Int., 2010, vol. 50, pp. 356–62.

    Article  CAS  Google Scholar 

  5. Q. Shu, T. Alatarvas, V. Visuri, and T. Fabritius: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 1818–29.

    Article  Google Scholar 

  6. K. Sasai: ISIJ Int., 2016, vol. 56, pp. 1013–22.

    Article  CAS  Google Scholar 

  7. C. Lu, W. Wang, J. Zeng, C. Zhu, and J. Chang: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 77–85.

    Article  Google Scholar 

  8. J.M. Ludwicki, F.L. Robinson, and P.H. Steen: ACS Appl. Mater. Interfaces, 2020, vol. 12, pp. 22115–19.

    Article  CAS  PubMed  Google Scholar 

  9. P.S. Marquis de Laplace: Traité de Mécanique Céleste, Courcier, Paris, 1805.

    Google Scholar 

  10. T. Young: Philos. Trans. R. Soc. Lond., 1805, vol. 95, pp. 65–87.

    Google Scholar 

  11. H. Daikoku, S. Kawanishi, T. Ishikawa, and T. Yoshikawa: J. Chem. Thermodyn., 2021, vol. 160, p. 106476.

    Article  CAS  Google Scholar 

  12. J.P. Anson, R. Drew, and J.E. Gruzleski: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 1027–32.

    Article  CAS  Google Scholar 

  13. M.G. Cabezas, A. Bateni, J.M. Montanero, and A.W. Neumann: Langmuir, 2006, vol. 22, pp. 10053–60.

    Article  CAS  PubMed  Google Scholar 

  14. B. Gallois and C. Lupis: Metall. Mater. Trans. B, 1981, vol. 12B, pp. 549–57.

    Article  CAS  Google Scholar 

  15. J. Lee, T. Tanaka, M. Yamamoto, and S. Hara: Mater. Trans., 2005, vol. 45, pp. 625–29.

    Article  Google Scholar 

  16. J. Schmitz, J. Brillo, I. Egry, and R. Schmid-Fetzer: Int. J. Mater. Res., 2013, vol. 100, pp. 1529–35.

    Article  Google Scholar 

  17. Tolman; and C. Richard: J. Chem. Phys., 1949, vol. 17, pp. 333–37.

  18. S.C. Hardy: J. Cryst. Growth, 1984, vol. 69, pp. 456–60.

    Article  CAS  Google Scholar 

  19. S. Ozawa, S. Takahashi, S. Suzuki, H. Sugawara, and H. Fukuyama: Jap. J. Appl. Phys., 2011, vol. 50, p. 11.

    Article  Google Scholar 

  20. S. Ozawa, S. Takahashi, N. Watanabe, and H. Fukuyama: Int. J. Thermophys., 2014, vol. 35, pp. 1705–11.

    Article  CAS  Google Scholar 

  21. Q. Li, H. Zhang, M. Gao, J. Li, and H. Zhang: J. Mater. Process. Tech., 2021, vol. 294, p. 117094.

    Article  CAS  Google Scholar 

  22. L. Liu, T.H. Wang, J.C. Li, and Q. Jiang: Solid State Commmun., 2012, vol. 15, pp. 573–76.

    Article  Google Scholar 

  23. X.U. Qian-Gang, Z. Hai-Feng, and H.U. Zhuang-Qi: Trans. Nonferr. Metal. Soc., 2005, vol. 15, pp. 45–50.

    Google Scholar 

  24. B. Yildiz and V. Bashiry: J. Adhes., 2018, vol. 95, pp. 929–42.

    Article  Google Scholar 

  25. M. Kishimoto, K. Mori, and Y. Kawai: ISIJ Int., 1984, vol. 48, pp. 413–17.

    CAS  Google Scholar 

  26. L.C. Zhong, M. Zeze, and K. Mukai: Acta Metall. Sin., 2004, vol. 17, pp. 795–804.

    CAS  Google Scholar 

  27. M. Divakar, J.P. Hajra, A. Jakobsson, and S. Seetharaman: Metall. Mater. Trans. B, 2000, vol. 31, pp. 267–76.

    Article  Google Scholar 

  28. K. Ogino, K. Nogi, and C. Hosoi: Tetsu- to- Hagane, 1983, vol. 69, pp. 1989–94.

    Article  CAS  Google Scholar 

  29. T. Yokoyama, Y. Ueshima, K. Sasai, Y. Mizukami, H. Kakimi, and M. Kato: Tetsu- to- Hagane, 1997, vol. 83, pp. 563–68.

    Article  CAS  Google Scholar 

  30. J. Lee, Y. Kim, J. Choe, and M. Abbasi: AISTech 2013, 2013, vol. 1, pp. 1117–22.

  31. N. Eustathopoulos: Acta Mater., 1998, vol. 46, pp. 2319–27.

    CAS  Google Scholar 

  32. K.C. Mills, E.D. Hondros, and Z. Li: J. Mater. Sci., 2005, vol. 40, pp. 2403–409.

    Article  CAS  Google Scholar 

  33. C. Wan, P. Kritsalis, B. Drevet, and N. Eustathopoulos: Mater. Sc. Eng. A, 1996, vol. 207, pp. 181–87.

    Article  Google Scholar 

  34. P. Kritsalis, B. Drevet, N. Valignat, and N. Eustathopoulos: Scr. Metall. Mater., 1994, vol. 30, pp. 1127–32.

    Article  CAS  Google Scholar 

  35. K. Landry, C. Rado, and N. Eustathopoulos: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3181–86.

    Article  CAS  Google Scholar 

  36. K. Landry, C. Rado, and R. Voitovich: Acta Mater., 1997, vol. 45, pp. 3079–85.

    Article  CAS  Google Scholar 

  37. A. Karasangabo and C. Bernhard: J. Adhes. Sci. Technol., 2012, vol. 26, pp. 1141–56.

    Article  CAS  Google Scholar 

  38. X. Cai, Y. Bao, L. Lin, and C. Gu: Steel Res. Int., 2015, vol. 87, pp. 1168–78.

    Article  Google Scholar 

  39. C.H. Chang, I.H. Jung, S.C. Park, H.S. Kim, and H.G. Lee: Ironmak. Steelmak., 2013, vol. 32, pp. 251–57.

    Article  Google Scholar 

  40. C. Wang, N. Verma, Y. Kwon, W. Tiekink, N. Kikuvhi, and S. Sridhar: ISIJ Int., 2011, vol. 51, pp. 375–81.

    Article  CAS  Google Scholar 

  41. C. Xuan, W. Mu, Z.I. Olano, P.G. Jnsson, and K. Nakajima: Steel Res. Int., 2016, vol. 87, pp. 911–20.

    Article  CAS  Google Scholar 

  42. C.G.L. Furmidge: J. Colloid Interface Sc., 1962, vol. 17, pp. 309–24.

    Article  CAS  Google Scholar 

  43. M. Remer, M. Psarski, K. Gumowski, J. Rokicki, G. Sobieraj, M. Kaliush, D. Pawlak, and G. Celichowski: Colloids Surf. A, 2016, vol. 508, pp. 57–69.

    Article  CAS  Google Scholar 

  44. S. Sikalo, H.D. Wilhelm, I.V. Roisman, S. Jakirli, and C. Tropea: Phys. Fluids, 2005, vol. 17, pp. 62103.

    Article  Google Scholar 

  45. S.F. Lunkad, V.V. Buwa, and K. Nigam: Chem. Eng. Sci., 2007, vol. 62, pp. 7214–24.

    Article  CAS  Google Scholar 

  46. J. Fukai, Z. Zhao, D. Poulikakos, C.M. Megaridis, and O. Miyatake: Phys. Fluids A, 1993, vol. 5, pp. 2588–99.

    Article  CAS  Google Scholar 

  47. D. Roux and J.J. Cooper-White: J. Colloid Interf. Sci., 2004, vol. 277, pp. 424–36.

    Article  CAS  Google Scholar 

  48. B. Deo, and R. Boom: Prentice Hall International, London, UK, 1993.

  49. W.Y. Kim, J.O. Jong-Oh, C.O. Lee, D.S. Kim, and J.J. Pak: ISIJ Int., 2008, vol. 48, pp. 17–22.

    Article  CAS  Google Scholar 

  50. W.C. Doo, D.Y. Kim, and K. Yi: Met. Mater. Int., 2007, vol. 13, pp. 249–55.

    Article  CAS  Google Scholar 

  51. S. Basu, S.K. Choudhary, and N.U. Girase: ISIJ Int., 2004, vol. 44, pp. 1653–660.

    Article  CAS  Google Scholar 

  52. M. Kudoh, K. Ohsasa, K. Tanaka, and K. Okuyama: Bull. Faculty Eng. Hokkaido University, 1992, vol. 162, pp. 191–202.

Download references

Acknowledgments

The financial support from the National Key Research and Development Program of China (No. 2021YFB3702401), the Hunan Scientific Technology Projects (No. 2020WK2003), and the National Science Foundation of China (No. 52130408) are greatly acknowledged.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanlin Wang or Xu Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, Q., Wang, W. & Gao, X. Measuring Dynamic Nonreactive Wetting Behavior Between Interstitial-Free Molten Steel and Alumina. Metall Mater Trans B (2024). https://doi.org/10.1007/s11663-024-03065-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11663-024-03065-7

Navigation