Skip to main content
Log in

Numerical Investigation of Gas and Slag Flow in the Packed Bed

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In the lower part of the blast furnace (BF), with gas introduced through tuyeres and slag flowing downward from cohesive zone to the hearth, strong cross-flow of gas relative to the slag occurs in front of the raceway, while in the upper parts, counter-current flow of gas and slag exists. The interaction between gas and slag is closely associated with the special flow phenomena such as loading, flooding, or channeling. These phenomena link to furnace irregularities, affecting smooth operation and limiting production. Therefore, understanding the gas–slag interaction and its influencing factors is critical for process control and stable BF operation. In the current study, counter-current gas–slag flow in the packed bed is numerically investigated using the Volume of Fluid technique. Different superficial gas velocities, slag properties, packing structures, and gas inlets are considered in the study. The gas–slag flow behavior at a mesoscopic level was visualized. In particular, localized slag flooding and gas channeling caused by the strong interaction between gas and slag were uniquely identified. Gas channeling, which is a critical phenomenon in a packed bed with counter-current gas–slag flow, can be enhanced by more wetting and higher viscosity slag, and poor permeability regions. It can be speculated that significant gas channeling in the BF can inevitably occur prior to operational limits being reached. In the BF process, the formation of permanent gas channeling and large slag rivulets should be avoided to maintain the proper contact between phases and furnace permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

a t :

Surface area per packing volume, m2 m3; for the packing with spherical particle \(A = 6\varepsilon_{{\text{s}}} /d_{{\text{s}}}\)

A :

Area, m2

F :

Surface tension force, kg m2 s2

g :

Gravitational acceleration, m s2

p :

Pressure, Pa

t :

Time, s

\(u\) :

Velocity, m s1

\(U\) :

Superficial velocity, m s1

\(\varepsilon\) :

Volume fraction, –

\(\eta_{{\text{l}}}\) :

Liquid viscosity in centipoise, ×103 kg m1 s1

\(\kappa_{{\text{i}}}\) :

Curvature of the interface, m1

\(\theta\) :

Contact angle, °

μ :

Viscosity, kg m1 s1

ρ :

Density, kg m3

\(\sigma\) :

Surface tension, kg s2

\(\tau\) :

Stress tensor, Pa

g :

Gas

i :

Phase i

j :

Phase j

l :

Liquid

s :

Solid

References

  1. Y. Omori: Blast Furnace Phenomena and Modelling, Elsevier Applied Science, London, 1987.

    Google Scholar 

  2. L. Baussaron, C. Julcour-Lebigue, A.M. Wilhelm, H. Delmas, and C. Boyer: AIChE J., 2007, vol. 53, pp. 1850–60.

    Article  ADS  CAS  Google Scholar 

  3. A.K. Biswas: Principles of Blast Furnace Ironmaking, Cootha Publishing House, Brisbane, 1981.

    Google Scholar 

  4. A.E. Scheidegger: The Physics of Flow Through Porous Media, Oxford University Press, Great Britain, 1963.

    Google Scholar 

  5. M. Leva: Tower Packings and Packed Tower Design, United States Stoneware Company, Akron, 1953.

    Google Scholar 

  6. G.C. Gardner: Chem. Eng. Sci., 1956, vol. 5, pp. 101–14.

    Article  CAS  Google Scholar 

  7. T. Fukutake and V. Rajakumar: Trans. Iron Steel Inst. Jpn., 1982, vol. 22, pp. 355–64.

    Article  Google Scholar 

  8. X.F. Dong, T. Pham, A.B. Yu, and P. Zulli: ISIJ Int., 2009, vol. 49, pp. 189–94.

    Article  CAS  Google Scholar 

  9. G.S. Gupta, J.D. Litster, V.R. Rudolph, E.T. White, and A. Domanti: ISIJ Int., 1996, vol. 36, pp. 32–39.

    Article  CAS  Google Scholar 

  10. D.Y. Liu, G.X. Wang, and J.D. Litster: ISIJ Int., 2001, vol. 41, pp. 10–17.

    Article  CAS  Google Scholar 

  11. G.X. Wang, S.J. Chew, A.B. Yu, and P. Zulli: ISIJ Int., 1997, vol. 37, pp. 573–82.

    Article  CAS  Google Scholar 

  12. J.C. Elgin and F.B. Weiss: Ind. Eng. Chem., 1939, vol. 31, pp. 435–45.

    Article  CAS  Google Scholar 

  13. T.K. Sherwood: Absorption and Extraction, 2nd ed. McGraw-Hill Book Co., New York, 1952.

    Google Scholar 

  14. T. Sugiyama and M. Sugata, Nippon Steel Technical Report, 1987, pp. 32–42.

  15. J. Szekely and Y. Kajiwara: Trans. Iron Steel Inst. Jpn., 1979, vol. 19, pp. 76–84.

    Article  CAS  Google Scholar 

  16. Y. Ohno and M. Schneider: Tetsu to Hagane, 1988, vol. 74, pp. 1923–30.

    Article  Google Scholar 

  17. J. Wang, R. Takahashi, and J. Yagi: Tetsu to Hagane, 1991, vol. 77, pp. 1585–92.

    Article  CAS  Google Scholar 

  18. G.X. Wang, S.J. Chew, A.B. Yu, and P. Zulli: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 333–43.

    Article  CAS  Google Scholar 

  19. S.J. Chew, P. Zulli, and A. Yu: ISIJ Int., 2001, vol. 41, pp. 1112–21.

    Article  CAS  Google Scholar 

  20. C.G. Sun, F.H. Yin, A. Afacan, K. Nandakumar, and K.T. Chuang: Chem. Eng. Res. Des., 2000, vol. 78, pp. 378–88.

    Article  CAS  Google Scholar 

  21. P. Spicka, M.M. Dias, and J.C.B. Lopes: Chem. Eng. Sci., 2001, vol. 56, pp. 6367–83.

    Article  CAS  Google Scholar 

  22. I. Iliuta, B.P.A. Grandjean, S. Piche, and F. Larachi: Chem. Eng. Sci., 2003, vol. 58, pp. 1373–80.

    Article  CAS  Google Scholar 

  23. C.W. Hirt and B.D. Nichols: J. Comput. Phys., 1981, vol. 39, pp. 201–25.

    Article  ADS  Google Scholar 

  24. X.F. Dong, A. Jayasekara, D. Sert, R. Ferreira, P. Gardin, B.J. Monaghan, S.J. Chew, D. Pinson, and P. Zulli: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 255–66.

    Article  ADS  Google Scholar 

  25. X.F. Dong, A. Jayasekara, D. Sert, R. Ferreira, P. Gardin, B.J. Monaghan, S.J. Chew, D. Pinson, and P. Zulli: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 2926–38.

    Article  ADS  Google Scholar 

  26. X.F. Dong, A. Jayasekara, D. Sert, R. Ferreira, P. Gardin, S.J. Chew, D. Pinson, B.J. Monaghan, and P. Zulli: Metall. Mater. Trans. B, 2023, vol. 54, pp. 56–69.

    Article  CAS  Google Scholar 

  27. J.U. Brackbill, D.B. Kothe, and C. Zemach: J. Comput. Phys., 1992, vol. 100, pp. 335–54.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  28. S. Yuan, R. Dabirian, O. Shoham, and R.S. Mohan: J. Energy Resour. Technol. Trans. ASME, 2020, vol. 142, pp. 102101–111.

    Article  CAS  Google Scholar 

  29. H.L. George, R.J. Longbottom, S.J. Chew, and B.J. Monaghan: ISIJ Int., 2014, vol. 54, pp. 820–26.

    Article  CAS  Google Scholar 

  30. T.W. Kang, S. Gupta, N. Saha-Chaudhury, and V. Sahajwalla: ISIJ Int., 2005, vol. 45, pp. 1526–35.

    Article  CAS  Google Scholar 

  31. H.L. George, B.J. Monaghan, R.J. Longbottom, S.J. Chew, and P.R. Austin: ISIJ Int., 2013, vol. 53, pp. 1172–79.

    Article  CAS  Google Scholar 

  32. J.S. Oh and J. Lee: J. Mater. Sci., 2016, vol. 51, pp. 1813–19.

    Article  ADS  CAS  Google Scholar 

  33. D.D. Geleta, M.I.H. Siddiqui, and J. Lee: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 102–13.

    Article  ADS  Google Scholar 

  34. S. Ergun: Chem. Eng. Prog., 1952, vol. 48, pp. 89–94.

    CAS  Google Scholar 

  35. J.F. Elliott, R.A. Buchanan, and J.B. Wagstaff: J. Met., 1952, vol. 194, pp. 709–17.

    Google Scholar 

  36. J. Szekely and J. Mendrykowski: Chem. Eng. Sci., 1972, vol. 27, pp. 959–63.

    Article  CAS  Google Scholar 

  37. H.L. Shulman, C.F. Ullrich, and N. Wells: AIChE J., 1955, vol. 1, pp. 247–53.

    Article  ADS  CAS  Google Scholar 

  38. H.L. George, R.J. Longbottom, S.J. Chew, D.J. Pinson, and B.J. Monaghan: ISIJ Int., 2014, vol. 54, pp. 1790–96.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the funding from the Australian Research Council (ARC) through the Industrial Transformation Research Hubs Scheme under Project Number: IH200100004. The funding support and permissions from ArcelorMittal and BlueScope Ltd to publish are gratefully acknowledged. This research was undertaken with the assistance of resources and services from the National Computational Infrastructure (NCI), which is supported by the Australian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. F. Dong.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X.F., Jayasekara, A., Sert, D. et al. Numerical Investigation of Gas and Slag Flow in the Packed Bed. Metall Mater Trans B (2024). https://doi.org/10.1007/s11663-024-03026-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11663-024-03026-0

Navigation