Skip to main content
Log in

Experimental and Numerical Simulation Study on Reduction of Pellets Based on X-ray Micro-computed Tomography

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The direct reduction process of pellets in ironmaking promises to reduce carbon emissions significantly. This paper concerns the reduction behavior of hematite pellets in a hydrogen atmosphere at different temperatures. The evolution of the 3D structure of the pellet during the reduction process was investigated by the interrupted reduction method and the X-ray Micro-computed Tomography technique. The effects of different reduction temperatures on the pellet size and porosity during the reduction process were clarified, and it was concluded that higher reaction temperatures induced a dramatic evolution of the pellet structure. A modified unreacted shrinking core model was developed based on the experimentally obtained pellet structural evolution model. The modified calculations were in greater conformity with the experimental results than the unmodified ones. The model identified the influence of the structural evolution of the pellet during the reduction process on the reduction resistance per-step and emphasized the negative contribution of the product gas. While the current approach provides a solid foundation for dynamic modeling of the pellet reduction process, more efforts are necessary to accomplish a realistic process model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. P. Metolina, T.R. Ribeiro, and R. Guardani: Int. J. Miner. Metall. Mater., 2022, vol. 29, pp. 1908–21.

    Article  CAS  Google Scholar 

  2. Y. Shi, D. Zhu, J. Pan, Z. Guo, S. Lu, and Y. Xue: J. Mater. Res. Technol., 2022, vol. 19, pp. 243–62.

    Article  CAS  Google Scholar 

  3. Y. Shi, D. Zhu, J. Pan, Z. Guo, S. Lu, and M. Xu: Powder Technol., 2022, vol. 408, p. 117782.

    Article  CAS  Google Scholar 

  4. J. Li, S. Kuang, L. Jiao, L. Liu, R. Zou, and A. Yu: Fuel, 2022, vol. 323, p. 124368.

    Article  CAS  Google Scholar 

  5. R. Beheshti, J. Moosberg-Bustnes, M.W. Kennedy, and R.E. Aune: Ironmak. Steelmak., 2016, vol. 43, pp. 31–38.

    Article  CAS  Google Scholar 

  6. Worldsteel Association, Fact sheet—direct reduced iron production, 2017 to 2021 (Worldsteel Association, 2022), https://worldsteel.org. Accessed 15 Oct 2022

  7. M. Kazemi, M.S. Pour, and S. Du: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 1114–22.

    Article  Google Scholar 

  8. I. Muchi: Trans. Iron Steel Inst. Jpn., 1967, vol. 7, pp. 223–37.

    Article  CAS  Google Scholar 

  9. R. Beheshti, J. Moosberg-Bustnes, and R.E. Aune: TMS 2014: 143rd Annual Meeting & Exhibition, Springer International Publishing, Cham, 2016, pp. 495–502.

    Google Scholar 

  10. A. Ranzani da Costa, D. Wagner, and F. Patisson: J. Clean. Prod., 2013, vol. 46, pp. 27–35.

    Article  CAS  Google Scholar 

  11. K.S. Abdel-Halim, M.I. Nasr, and A.A. El-Geassy: Ironmak. Steelmak., 2011, vol. 38, pp. 189–96.

    Article  CAS  Google Scholar 

  12. W. Li, G. Fu, M. Chu, and M. Zhu: J. Iron Steel Res. Int., 2017, vol. 24, pp. 34–42.

    Article  CAS  Google Scholar 

  13. F. Chen, Y. Guo, T. Jiang, F. Zheng, S. Wang, and L. Yang: J. Iron Steel Res. Int., 2017, vol. 24, pp. 266–72.

    Article  Google Scholar 

  14. M.E. Kinaci, T. Lichtenegger, and S. Schneiderbauer: Chem. Eng. Sci., 2020, vol. 227, p. 115858.

    Article  CAS  Google Scholar 

  15. A. Ajbar, K. Alhumaizi, and M. Soliman: Ironmak. Steelmak., 2011, vol. 38, pp. 401–11.

    Article  CAS  Google Scholar 

  16. E.T. Turkdogan and J.V. Vinters: Metall. Mater. Trans. B, 1971, vol. 2B, pp. 3175–88.

    Article  Google Scholar 

  17. Y. Liu, F. Su, Z. Wen, Z. Li, H. Yong, and X. Feng: Miner. Process. Extr. Metall., 2015, vol. 124, pp. 27–34.

    Article  CAS  Google Scholar 

  18. S.M.M. Nouri, H. Ale Ebrahim, and E. Jamshidi: Chem. Eng. J., 2011, vol. 166, pp. 704–09.

    Article  CAS  Google Scholar 

  19. C. Liu, X. Ding, J. Dai, Z. Tang, and Y. Dong: Ironmak. Steelmak., 2020, vol. 47, pp. 882–91.

    Article  CAS  Google Scholar 

  20. M.S. Valipour, M.Y. Motamed Hashemi, and Y. Saboohi: Adv. Powder Technol., 2006, vol. 17, pp. 277–95.

    Article  CAS  Google Scholar 

  21. M. Valipour and M. Mokhtari: Int. J. Iron Steel Soc. Iran, 2011, vol. 8, pp. 9–15.

    Google Scholar 

  22. H.Y. Sohn and Y. Mohassab: J. Sustain. Metall., 2016, vol. 2, pp. 216–27.

    Article  Google Scholar 

  23. M. Kazemi, B. Glaser, and S. Du: Steel Res. Int., 2014, vol. 85, pp. 718–28.

    Article  CAS  Google Scholar 

  24. A. Bonalde, A. Henriquez, and M. Manrique: ISIJ Int., 2005, vol. 45, pp. 1255–60.

    Article  CAS  Google Scholar 

  25. X. Fu, K. Ma, J. Ju, and X. Xing: China Metall., 2022, vol. 32, pp. 80–86.

    Google Scholar 

  26. S. Yang, W. Gao, Y. Wang, and J. Li: J. Iron Steel Res., 2021, vol. 33, pp. 1245–52.

    CAS  Google Scholar 

  27. M. Gan, W. Shu, Z. Ji, Z. Zhou, X. Fan, B. Hu, G. Wang, Y. Zhu, and Y. Sun: J. Iron Steel Res. Int., 2022, vol. 29, pp. 215–22.

    Article  CAS  Google Scholar 

  28. H. Nie, B. Qi, Y. Li, D. Qiu, H. Wei, A. Hammam, A. Ahmed, and Y. Yu: Steel Res. Int., 2023, vol. 94, p. 2200241.

    Article  CAS  Google Scholar 

  29. R.H. Tien and E.T. Turkdogan: Metall. Trans., 1972, vol. 3, pp. 2039–48.

    Article  CAS  Google Scholar 

  30. Z. Zhao, J. Tang, M. Chu, X. Wang, A. Zheng, X. Wang, and Y. Li: Int. J. Miner. Metall. Mater., 2022, vol. 29, pp. 1891–1900.

    Article  CAS  Google Scholar 

  31. P. Wang, C. Wang, H. Wang, H. Long, and T. Zhou: Powder Technol., 2022, vol. 396, pp. 477–89.

    Article  CAS  Google Scholar 

  32. C. Scharm, F. Küster, M. Laabs, Q. Huang, O. Volkova, M. Reinmöller, S. Guhl, and B. Meyer: Miner. Eng., 2022, vol. 180, p. 107459.

    Article  CAS  Google Scholar 

  33. L. Yi, Z. Huang, T. Jiang, L. Wang, and T. Qi: Powder Technol., 2015, vol. 269, pp. 290–95.

    Article  CAS  Google Scholar 

  34. J.Y. Fu, T. Jiang, and D.Q. Zhu: Sintering and Pelletizing, vol. 102, Central South University of Technology Press, Changsha, 1996.

    Google Scholar 

  35. O. Hessling, J.B. Fogelström, N. Kojola, and D. Sichen: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 1258–68.

    Article  Google Scholar 

  36. Y. Korobeinikov, A. Meshram, C. Harris, O. Kovtun, J. Govro, R.J. O’Malley, O. Volkova, and S. Sridhar: Steel Res. Int., 2023, https://doi.org/10.1002/srin.202300066.

    Article  Google Scholar 

  37. J.O. Edstrom and G. Bitsianes: JOM, 1955, vol. 7, pp. 760–65.

    Article  CAS  Google Scholar 

  38. H.T. Wang and H.Y. Sohn: Ironmak. Steelmak., 2011, vol. 38, pp. 447–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by China Scholarship Council under Grant No. (202106890046), the National Natural Science Foundation of China under Grant No. (51974182), Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning under Grant No. (TP2015039), National 111 Project (The Program of Introducing Talents of Discipline to University), under Grant No. (D17002), Independent Research Project of State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of advanced Ferrometallurgy, Shanghai University (SKLASS 2022-Z01), the Science and Technology Commission of Shanghai Municipality, under Grant No. (19DZ2270200), and China Baowu Low Carbon Metallurgy Innovation Foudation-BWLCF202112. The authors thank Hao Nie and Yifan Xv for their help with the experimental work and English language editing.

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaowei Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, D., Wei, S., Elsherbiny, A.A. et al. Experimental and Numerical Simulation Study on Reduction of Pellets Based on X-ray Micro-computed Tomography. Metall Mater Trans B 54, 3299–3311 (2023). https://doi.org/10.1007/s11663-023-02908-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02908-z

Navigation