Skip to main content
Log in

Viscosity of CaO–SiO2–Al2O3–MgO–TiO2–FeO Slag in HIsmelt Process: Influence of TiO2 Content on Viscosity and Crystallization

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Vanadium–titanium magnetite is a complex ore with iron, vanadium, titanium, and other valuable elements, and it is of great significance to recycle the valuable elements. HIsmelt smelting reduction of vanadium–titanium magnetite is a clean and effective ironmaking process. The effect of TiO2 content on the viscosity of CaO–SiO2–Al2O3–MgO–TiO2–FeO slag system is studied by rotating cylinder method. The composition and microstructure of crystalline phase are analyzed by XRD and SEM–EDS, and compared with the thermodynamic calculation results of FactSage8.1. The results show that the viscosity of molten slag decreased with the increase of TiO2 content, and TiO2 content has a great impact on the viscosity, when the TiO2 content in the slag is less than 20 pct and the temperature is less than 1395 °C. With the increase of TiO2 content, the diffraction peak of perovskite is enhanced, the gehlenite and akermanite are gradually reduced, the shape of perovskite changes from irregular polygon to needle dendrite, and the number also increases gradually. When the TiO2 content reaches 20 pct, the perovskite reaches saturation state. With the increase of TiO2 content, the main precipitates change from perovskite, gehlenite, and akermanite to perovskite, anorthite, and titania spinel. Titanium existed in the slag as perovskite first, and then as baikovite and titanium spinel. Therefore, for high-titanium slag, the TiO2 content has little effect on the fluidity of HIsmelt process slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Feng, M.S. Chu, J. Tang, Y.T. Tang, and Z.G. Liu: Steel Res. Int., 2016, vol. 87, pp. 1274–83. https://doi.org/10.1002/srin.201500355.

    Article  CAS  Google Scholar 

  2. W.L. Nie, X.Y. Yang, Z.F. He, Y.W. Yang, X. Luo, Q.D. Li, and M.Z. Yu: Met. World, 2022, https://doi.org/10.3969/j.issn.1000-6826.2020.12.2801.

    Article  Google Scholar 

  3. L. Starkey: ASEG Extended Abstracts, 1994, pp. 383–90. https://doi.org/10.1071/ASEGSpec07_28.

  4. L.L. Chen: China Resour. Compr. Util. (China), 2015, vol. 33, pp. 31–33.

    CAS  Google Scholar 

  5. K.J. Hu, J. Yao, and Q. Xi: World Nonferrous Metals, 2008, (1), pp. 36–42.

  6. X.D. Wang, W. Wei, X.B. Lv, X.J. Fan, S.B. Wang, and Y. Liu: Geol. J., 2017, vol. 53, pp. 1823–39. https://doi.org/10.1002/gj.3009.

    Article  CAS  Google Scholar 

  7. J. Fang: Non-blast Furnace Ironmaking Technology and Theory, 2nd ed. Metallurgical Industry Press, Beijing, 2010, pp. 179–80.

    Google Scholar 

  8. J.L. Zhang, Z.J. Liu, and T.J. Yang: Non-blast Furnace Ironmaking, Metallurgical Industry Press, Beijing, 2015.

    Google Scholar 

  9. Y.C. Zhao, Y.Y. Chu and C.S. Huang: Ind. Heat., 2018, vol. 47, pp. 18–20 + 33. https://doi.org/10.3969/j.issn.1002-1639.2018.06.006.

  10. S.B. Xu and H.F. Xu: China Metall., 2016, vol. 26, pp. 33–39. https://doi.org/10.13228/j.boyuan.issn1006-9356.20160028.

    Article  Google Scholar 

  11. N. Goodman and R. Dry: Proc. 5th Int. Congr. Sci. Technol. Ironmak., 2009, pp. 349–54.

  12. M. Wang, R.X. Ren, H.W. Dong, G.J. Zhang, and S.Y. Liu: Iron Steel (China), 2020, vol. 55, pp. 145–50. https://doi.org/10.13228/j.boyuan.issn0449-749x.20190550.

    Article  CAS  Google Scholar 

  13. S.G. Xu, Z.M. Li, and Q. Lyu: Ironmaking (China), 2007, vol. 26, pp. 59–62.

    Google Scholar 

  14. J.L. Zhang, G.Q. Zhang, Z.J. Liu, Z.H. Wang, K.J. Li, and X.B. Zhang: China Metall. (China), 2018, vol. 28, pp. 37–41 + 46. https://doi.org/10.13228/j.boyuan.issn1006-9356.20180021.

  15. J. Liu and Z.H. Peng: Ironmaking (China), 2022, vol. 41, pp. 54–61.

    CAS  Google Scholar 

  16. Z. Wang, Z. Li, M. Zhong, Z. Li, and C. Wang: J. Non-Cryst. Solids, 2023, https://doi.org/10.1016/j.jnoncrysol.2022.122071.

    Article  Google Scholar 

  17. Z. Pang, Y. Jiang, X. Lv, Z. Yan, and W. He: 10th International Symposium on High-Temperature Metallurgical Processing, 2019, pp. 531–38.

  18. Z. Wang, J. Zhang, M. Zhong, and C. Wang: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 1364–70. https://doi.org/10.1007/s11663-022-02507-4.

    Article  CAS  Google Scholar 

  19. Z. Wang and I. Sohn: J. Am. Ceram. Soc., 2018, vol. 101, pp. 4285–96. https://doi.org/10.1111/jace.15559.

    Article  CAS  Google Scholar 

  20. J. Yang and I. Sohn: J. Mater. Sci. Technol., 2022, vol. 131, pp. 195–203. https://doi.org/10.1016/j.jmst.2022.05.037.

    Article  CAS  Google Scholar 

  21. Z. Wang and I. Sohn: Ceram. Int., 2020, vol. 46, pp. 903–12. https://doi.org/10.1016/j.ceramint.2019.09.048.

    Article  CAS  Google Scholar 

  22. J. Ma, W. Li, G.Q. Fu, and M.Y. Zhu: ISIJ Int., 2020, vol. 60, pp. 2408–18. https://doi.org/10.2355/isijinternational.ISIJINT-2020-244.

    Article  CAS  Google Scholar 

  23. Z. Yan, X.W. Lv, W.C. He, and J. Xu: ISIJ Int., 2017, vol. 57, pp. 31–36. https://doi.org/10.2355/isijinternational.ISIJINT-2016-420.

    Article  CAS  Google Scholar 

  24. K.X. Jiao, J.L. Zhang, Z.Y. Wang, C.L. Chen, and Y.X. Liu: Steel Res. Int., 2017, vol. 88, p. 1200296. https://doi.org/10.1002/srin.201600296.

    Article  CAS  Google Scholar 

  25. S.S. Zhang, P. Hu, J.T. Rao, Z.Y. Wang, Y.B. Zong, and J.L. Zhang: Metals, 2022, vol. 12, p. 1019. https://doi.org/10.3390/met12061019.

    Article  CAS  Google Scholar 

  26. Z. Wang, H.Y. Sun, and Q.S. Zhu: Int. J. Miner. Metall. Mater., 2019, vol. 26, pp. 1120–28. https://doi.org/10.1007/s12613-019-1830-9.

    Article  CAS  Google Scholar 

  27. T.L. Li, C.Y. Sun, D. Lan, J. Song, S. Song, and Q. Wang: ISIJ Int., 2019, vol. 59, pp. 245–52. https://doi.org/10.2355/isijinternational.ISIJINT-2018-498.

    Article  Google Scholar 

  28. H.B. Ma, K.X. Jiao, J.L. Zhang, Y.B. Zong, J. Zhang, and S. Meng: Ceram. Int., 2021, vol. 47, pp. 17445–54. https://doi.org/10.1016/j.ceramint.2021.03.061.

    Article  CAS  Google Scholar 

  29. Z. Wang, X.W. Liu, L. Zhang, and Q.S. Zhu: Trans. Indian Inst. Met., 2015, vol. 69, pp. 97–105. https://doi.org/10.1007/s12666-015-0720-8.

    Article  CAS  Google Scholar 

  30. H.B. Ma, K.X. Jiao, and J.L. Zhang: CrystEngComm, 2022, vol. 22, pp. 361–70. https://doi.org/10.1039/c9ce01695c.

    Article  CAS  Google Scholar 

  31. Z.J. Wang and I. Sohn: ISIJ Int., 2020, vol. 60, pp. 2705–16. https://doi.org/10.2355/isijinternational.ISIJINT-2019-522.

    Article  CAS  Google Scholar 

  32. V. Carles, P. Alphonse, P. Tailhades, and A. Rousset: Thermochim. Acta, 1999, vol. 334, pp. 107–13.

    Article  CAS  Google Scholar 

  33. B. Boyanov and D. Xhadzhie: Thermochim. Acta, 1985, vol. 93, pp. 89–92.

    Article  CAS  Google Scholar 

  34. Y. Zhou, Y.M. Gao, X.J. Ma, X. Zheng, M. Wang, and B. Wang: J. Wuhan Univ. Sci. Technol., 2013, vol. 36, pp. 383–86.

    CAS  Google Scholar 

  35. D. Yang, H.H. Zhou, J. Wang, Z.D. Pang, G.S. Pei, Z.M. Yan, H.X. Mao, G.B. Qiu, and X.W. Lv: J. Mater. Res. Technol., 2021, vol. 12, pp. 1615–22. https://doi.org/10.1016/j.jmrt.2021.03.069.

    Article  CAS  Google Scholar 

  36. J.B. Kim and I. Sohn: ISIJ Int., 2014, vol. 54, pp. 2050–58. https://doi.org/10.2355/isijinternational.54.2050.

    Article  CAS  Google Scholar 

  37. I. Sohn, W. Wang, H. Matsuura, F. Tsukihashi, and D.J. Min: ISIJ Int., 2012, vol. 52, pp. 158–60. https://doi.org/10.2355/isijinternational.52.158.

    Article  CAS  Google Scholar 

  38. Z. Tong, J. Wang, C. Xu, and Z. Xie: Nonferr. Met. Sci. Eng., 2023, pp. 1–14 (Online). https://kns.cnki.net/kcms/detail/36.1311.TF.20230607.1453.006.html.

  39. G.X. Qiu, D.J. Miao, M.C. Cai, X.M. Li, D.P. Zhan, and Y.F. Liu: Iron Steel (China), 2022, vol. 57, pp. 42–52. https://doi.org/10.13228/j.boyuan.issn0449-749x.20220281.

    Article  CAS  Google Scholar 

  40. A.Y. Ilyushechkin, S.S. Hla, D.G. Roberts, and N.N. Kinaev: J. Non-Cryst. Solids, 2011, vol. 357, pp. 893–902. https://doi.org/10.1016/j.jnoncrysol.2010.12.004.

    Article  CAS  Google Scholar 

  41. A. Ilyushechkin and A. Kondratiev: J. Rheol., 2019, vol. 63, pp. 719–33. https://doi.org/10.1122/1.5095968.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the High-End Iron and Steel Metallurgy Joint Fund Project of Hebei Natural Science Foundation (No. E2020209208), Chengde Science and Technology Plan (No. 202205B060), and Tangshan Science and Technology Plan (No. 22130203H).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y.J., Liu, R., Wang, Y. et al. Viscosity of CaO–SiO2–Al2O3–MgO–TiO2–FeO Slag in HIsmelt Process: Influence of TiO2 Content on Viscosity and Crystallization. Metall Mater Trans B 54, 3288–3298 (2023). https://doi.org/10.1007/s11663-023-02907-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02907-0

Navigation