Skip to main content
Log in

Simulation Study on Transient Periodic Heat Transfer Behavior of Meniscus in Continuous Casting Mold

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Properly coordinating the initial solidification and heat transfer behavior of the meniscus of the mold is crucial for stabilizing and improving the surface quality of continuous casting slabs. The study comprehensively considers the geometric, contact, and motion characteristics of the meniscus under mold periodic oscillation, and develops a three-dimensional numerical model that couples the heat transfer of molten steel, shell solidification, and multiphase flow. The transient periodic heat transfer behavior of the meniscus in the mold is simulated and analyzed. The investigation begins with analyzing the distribution and variation of heat flux, and then focuses on analyzing the effects of steel level height, upper backflow, and thickness of mold flux on the formation of local high heat flux regions, periodic severe fluctuations, and sharp changes in corner heat flux. The transient variation and signal characteristics of heat flux near the meniscus are analyzed through Fast Fourier Transform (FFT) and Power Spectral Density (PSD). The analysis reveals that the high steel level with circulation is the main factor contributing to the formation of a local high heat flux zone. The flow patterns of molten steel and the uneven distribution of solid slag film can result in discontinuities in the region of sharp fluctuations. The variation of transient heat flux is affected by the relative motion between the initial solidified shell and the copper plate in the meniscus. The low-frequency heat flux is closely related to the melt flow fluctuations and the shell solidification, while the high-frequency heat flux is introduced by the mold oscillation. The signal difference of the heat flux near the meniscus is determined by its solidification rate and height. The results are beneficial for monitor the formation of initial solidification shell defects of the meniscus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M. Suzuki, M. Suzuki, and M. Nakada: ISIJ Int., 2001, vol. 41, pp. 670–82.

    CAS  Google Scholar 

  2. S. Harada, S. Tanaka, H. Misumi, S. Mizoguchi, and H. Horiguchi: ISIJ Int., 1990, vol. 30, pp. 310–16.

    CAS  Google Scholar 

  3. X.J. Zuo, R.G. Lin, N. Wang, J. Yang, X.N. Meng, and M.Y. Zhu: Steel Res. Int., 2016, vol. 87, pp. 413–23.

    CAS  Google Scholar 

  4. P.E.R. Lopez, K.C. Mills, P.D. Lee, and B. Santillana: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 109–22.

    Google Scholar 

  5. J. Sengupta, B.G. Thomas, H.J. Shin, G.G. Lee, and S.H. Kim: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1597–1611.

    CAS  Google Scholar 

  6. H. Mizukami, Y. Shirai, and S. Hiraki: ISIJ Int., 2020, vol. 60, pp. 1968–77.

    CAS  Google Scholar 

  7. P.E.R. Lopez, P.N. Jalali, U. Sjöström, P.G. Jönsson, K.C. Mills, and I. Sohn: ISIJ Int., 2018, vol. 58, pp. 201–10.

    CAS  Google Scholar 

  8. X.Z. Zhang, X.R. Zheng, Q.G. Liu, and X.K. Li: J. Iron Steel Res. Int., 2013, vol. 20, pp. 19–24.

    CAS  Google Scholar 

  9. H.J. Shin, S.H. Kim, B.G. Thomas, G.G. Lee, J.M. Park, and J. Sengupta: ISIJ Int., 2006, vol. 46, pp. 1635–44.

    CAS  Google Scholar 

  10. A. Yamauchi, S. Itoyama, Y. Kishimoto, H. Tozawa, and K. Sorimachi: ISIJ Int., 2002, vol. 42, pp. 1094–1102.

    CAS  Google Scholar 

  11. A. Badri, T.T. Natarajan, C.C. Snyder, K.D. Powers, F.J. Mannion, and A.W. Cramb: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 355–71.

    CAS  Google Scholar 

  12. A. Badri, T.T. Natarajan, C.C. Snyder, K.D. Powers, F.J. Mannion, M. Byrne, and A.W. Cramb: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 373–83.

    CAS  Google Scholar 

  13. E.Y. Ko, J. Choi, J.Y. Park, and I. Sohn: Met. Mater. Int., 2014, vol. 20, pp. 141–51.

    CAS  Google Scholar 

  14. J.Y. Park, E.Y. Ko, J. Choi, and I. Sohn: Met. Mater. Int., 2014, vol. 20, pp. 1103–14.

    CAS  Google Scholar 

  15. Y. Liu, W. Wang, F. Ma, and H. Zhang: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1419–30.

    Google Scholar 

  16. F. Ma, Y. Liu, W. Wang, and H. Zhang: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1902–11.

    Google Scholar 

  17. W. Wang, C. Zhu, and L. Zhou: Steel Res. Int., 2017, vol. 88, p. 1600488.

    Google Scholar 

  18. L. Yu, S. Pei, W.L. Wang, and H.H. Zhang: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 247–59.

    Google Scholar 

  19. L. Yu, S. Pei, W.L. Wang, X. Long, K. Zhang, E. Gao, and R. Qin: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 78–88.

    Google Scholar 

  20. X. Li, Z. Zhang, M. Lv, M. Fang, and K. Liu: Steel Res. Int., 2022, vol. 93, p. 2100673.

    CAS  Google Scholar 

  21. H. Chen, M. Long, D. Chen, T. Liu, and H. Duan: Int. J. Heat Mass Transf., 2018, vol. 126, pp. 843–53.

    CAS  Google Scholar 

  22. W. Chen, L. Zhang, Y. Wang, Y. Ren, Q. Ren, and W. Yang: Int. J. Heat Mass Transf., 2022, vol. 190, p. 122789.

    CAS  Google Scholar 

  23. H. Yang, P.E.R. Lopez, and D.M. Vasallo: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 2760–85.

    Google Scholar 

  24. B.G. Thomas: Steel Res. Int., 2018, vol. 89, p. 1700312.

    Google Scholar 

  25. P.E.R. Lopez, P.D. Lee, and K.C. Mills: ISIJ Int., 2010, vol. 50, pp. 425–34.

    Google Scholar 

  26. P.E.R. Lopez, P.D. Lee, K.C. Mills, and B. Santillana: ISIJ Int., 2010, vol. 50, pp. 1797–1804.

    Google Scholar 

  27. A.S.M. Jonayat and B.G. Thomas: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1842–64.

    Google Scholar 

  28. J. Yang, Z.Z. Cai, and M.Y. Zhu: ISIJ Int., 2018, vol. 58, pp. 299–308.

    CAS  Google Scholar 

  29. J. Yang, X.N. Meng, and M.Y. Zhu: ISIJ Int., 2018, vol. 58, pp. 2071–78.

    CAS  Google Scholar 

  30. S. Zhang, Q. Wang, S. He, and Q. Wang: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 2038–49.

    Google Scholar 

  31. X. Zhang, W. Chen, P.R. Scheller, Y. Ren, and L. Zhang: JOM, 2019, vol. 71, pp. 78–87.

    CAS  Google Scholar 

  32. Y. Deng, Y. Zhang, Q.Q. Wang, and Q. Wang: JOM, 2018, vol. 70, pp. 2909–16.

    Google Scholar 

  33. X. Zhang, W. Chen, Y. Ren, and L. Zhang: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 1444–60.

    Google Scholar 

  34. X. Zhang, Z. Dan, W. Chen, L. Zhang, and Q. Wang: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 322–38.

    Google Scholar 

  35. J. Ji, Y. Cui, X. Zhang, Q.Q. Wang, S. He, and Q. Wang: Steel Res. Int., 2021, vol. 92, p. 2000636.

    CAS  Google Scholar 

  36. J. Ji, Y. Mao, X. Zhang, W. Chen, L. Zhang, and Q. Wang: Steel Res. Int., 2021, vol. 92, p. 2000714.

    CAS  Google Scholar 

  37. J.U. Brackbill, D.B. Kothe, and C. Zemach: J. Comput. Phys., 1992, vol. 100, pp. 335–54.

    CAS  Google Scholar 

  38. C. Ojeda, J. Sengupta, B.G. Thomas, J. Barco, and J.L. Arana: AISTech, 2006, vol. 1, pp. 1017–28.

    Google Scholar 

  39. X.D. Wang, L.W. Kong, M. Yao, and X.B. Zhang: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 357–66.

    Google Scholar 

  40. Q.Q. Wang and L.F. Zhang: JOM, 2016, vol. 68, pp. 2170–79.

    CAS  Google Scholar 

  41. M. Hanao, M. Kawamoto, and A. Yamanaka: ISIJ Int., 2009, vol. 49, pp. 365–74.

    CAS  Google Scholar 

  42. M. Suzuki, S. Miyahara, T. Kitagawa, S. Uchida, T. Mori, and K. Okimoto: Tetsu-to-Hagane J. Iron Steel Inst. Jpn, 1992, vol. 78, pp. 113–20.

    CAS  Google Scholar 

  43. H. Zhang, W. Wang, F. Ma, and L. Zhou: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2361–73.

    Google Scholar 

  44. R.B. Mahapatra, J.K. Brimacombe, and I.V. Samarasekera: Metall. Mater. Trans. B, 1991, vol. 22B, pp. 875–88.

    CAS  Google Scholar 

  45. Y.A. Meng and B.G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 685–706.

    CAS  Google Scholar 

  46. A. Yamauchi, T. Emi, and S. Seetharaman: ISIJ Int., 2002, vol. 42, pp. 1084–93.

    CAS  Google Scholar 

  47. X.D. Wang, L.W. Kong, F.M. Du, M. Yao, X. Zhang, and M.A. Han: ISIJ Int., 2016, vol. 56, pp. 803–11.

    CAS  Google Scholar 

  48. H. Zhang and W. Wang: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 779–93.

    Google Scholar 

Download references

Acknowledgments

The present work was financially supported by the National Natural Science Foundation of China under Nos. 51974056 and 51474047.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Yao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, ZJ., Wang, XD. & Yao, M. Simulation Study on Transient Periodic Heat Transfer Behavior of Meniscus in Continuous Casting Mold. Metall Mater Trans B 54, 3164–3179 (2023). https://doi.org/10.1007/s11663-023-02899-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02899-x

Navigation