Skip to main content
Log in

Pelletization of a Low-Grade Indian Chromite Overburden: Optimizing the Induration Parameters and Understanding the Consolidation Behavior

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

High-quality pellets have been developed from a low-grade Indian chromite overburden containing high silica in the present study. The thermodynamic, hot-stage microscopic, and thermogravimetric analyses of the overburden and pellet mixes predict the temperature of formation of low melting slag phases at various basicity. A temperature in the range of 1200 °C to 1300 °C and basicity between 0.10 and 0.15 have been found ideal for the initiation of the slag phases, whereas higher conditions lead to softening of the pellets. The effect of basicity, binder content, induration temperature, and time on the physical and metallurgical properties of the indurated pellets has been investigated. A binder content of 1 wt pct, basicity of 0.15, induration temperature of 1250 °C, and a time of 20 minutes are optimum to provide the desired properties to the pellets. X-ray diffraction and Scanning Electron Microscopy coupled with Energy Dispersion Spectroscopy analysis reveal that under the optimum conditions, hematite recrystallization and slag formation impart the needed strength (133.8 kg/pellet), porosity (27.8 pct), tumbler index (99.2 pct), RI (76.2 pct), and RDI (1.2 pct). Conversely, increasing the basicity and the induration temperature results in the melting of the slag phases and, therefore, impair the consolidation of the pellets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. G. Pilla, R.K. Dishwar, S. Agrawal, A.K. Mandal, N.D. Sahu, and O.P. Sinha: J. Min. Metall. Sect. B Metall., 2020, vol. 56, pp. 229–35.

    Article  Google Scholar 

  2. Government of India, Ministry of Mines, Indian Bureau of Mines: Indian Minerals Yearbook 2020 (Part-III: Mineral Reviews), Government of India, Ministry of Mines, Indian Bureau of Mines, Nagpur, 2022.

    Google Scholar 

  3. G.U. Kapure, C.B. Rao, V.D. Tathavadkar, and R. Sen: Ironmak. Steelmak., 2011, vol. 38, pp. 590–96.

    Article  CAS  Google Scholar 

  4. S.K. Behera, P.P. Panda, S. Singh, N. Pradhan, L.B. Sukla, and B.K. Mishra: Int. Biodeterior. Biodegrad., 2011, vol. 65, pp. 1035–42.

    Article  CAS  Google Scholar 

  5. S. Biswas, S. Chakraborty, M.G. Chaudhuri, P.C. Banerjee, S. Mukherjee, and R. Dey: J. Chem. Technol. Biotechnol., 2014, vol. 89, pp. 1491–1500.

    Article  CAS  Google Scholar 

  6. S.K. Behera, S.K. Panda, N. Pradhan, L.B. Sukla, and B.K. Mishra: Bioresour. Technol., 2012, vol. 125, pp. 17–22.

    Article  CAS  Google Scholar 

  7. Y.V. Swamy, B.V.R. Murthy, and B.R. Reddy: Min. Metall. Explor., 2000, vol. 17, pp. 223–27.

    CAS  Google Scholar 

  8. S. Prasad, M. Kumar, and N.S. Randhawa: Trans. Indian Inst. Met., 2021, vol. 74, pp. 2221–30.

    Article  CAS  Google Scholar 

  9. S.B. Kanungo and S.K. Mishra: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 389–99.

    Article  CAS  Google Scholar 

  10. S. Dwarapudi, V. Tathavadkar, B.C. Rao, T.K. Sandeep Kumar, T.K. Ghosh, and M. Denys: ISIJ Int., 2013, vol. 53, pp. 9–17.

    Article  CAS  Google Scholar 

  11. D. Nayak, N. Ray, N. Dash, S.S. Rath, S. Pati, and P.S. De: Powder Technol., 2021, vol. 380, pp. 408–20.

    Article  CAS  Google Scholar 

  12. G.H. Li, X.Q. Li, Y.B. Zhang, G.Q. He, and T. Jiang: Ironmak. Steelmak., 2009, vol. 36, pp. 393–96.

    Article  CAS  Google Scholar 

  13. A. Ammasi and J. Pal: Ironmak. Steelmak., 2016, vol. 43, pp. 203–13.

    Article  CAS  Google Scholar 

  14. G. Fu, W. Li, M. Chu, and M. Zhu: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 114–23.

    Article  Google Scholar 

  15. F.E. Santos, C.H. Borgert, L.R. Neto, J.R. de Oliveira, H.J.F. Filho, J.O. Alves, J.P. Machado, F.F. Grillo, V.B. Telles, and E. Junca: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 1664–80.

    Article  Google Scholar 

  16. D. Nayak, N. Ray, N. Dash, S.S. Rath, and S.K. Biswal: J. Cent. South Univ., 2020, vol. 27, pp. 1678–90.

    Article  CAS  Google Scholar 

  17. D. Nayak, N. Ray, N. Dash, S.S. Rath, S. Pati, and P.S. De: J. Sustain. Metall., 2021, https://doi.org/10.1007/s40831-021-00410-x.

    Article  Google Scholar 

  18. P. Prusti, S.S. Rath, N. Dash, B.C. Meikap, and S.K. Biswal: Adv. Powder Technol., 2021, vol. 32, pp. 3735–45.

    Article  CAS  Google Scholar 

  19. S.N. Sahu, B.C. Meikap, and S.K. Biswal: Sep. Purif. Technol., 2023, vol. 311, p. 123327.

    Article  CAS  Google Scholar 

  20. FactSage.com, https://www.factsage.com/, Accessed 27 Sept 2022

  21. B. Monsen, E. Thomassen, I. Brakstad, E. Ringdalen, and P.H. Hoegass: AISTech 2015 Proc., Cleveland, OH. 2015.

  22. M. Gan, Z. Ji, X. Fan, W. Lv, R. Zheng, X. Chen, S. Liu, and T. Jiang: Powder Technol., 2018, vol. 333, pp. 385–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank TATA Steel Limited, Jamshedpur, for funding this research and providing valuable technical support. They also thank the Director, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, for his consent to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Nayak.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, D., Sahu, N., Sahu, D.K. et al. Pelletization of a Low-Grade Indian Chromite Overburden: Optimizing the Induration Parameters and Understanding the Consolidation Behavior. Metall Mater Trans B 54, 3049–3059 (2023). https://doi.org/10.1007/s11663-023-02888-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02888-0

Navigation