Skip to main content
Log in

Revealing Inclusion Evolution Behaviors During Hot-Rolling Heating of EH550 Offshore Engineering Steel

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Inclusion evolution behaviors of EH550 steel during hot-rolling heating have been investigated in situ by employing a confocal scanning laser microscope. It is found that, as heating continues, the area fraction of inclusions sharply increases, reaches the peak value at 1223 K, and diminishes to the minimum value upon reaching 1373 K. The inclusion, clarified by means of ex situ examination, is primarily composed of boron nitride, and the formation mechanisms have been further elaborated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. X. Wang, Y. Tsai, J. Yang, Z. Wang, X. Li, C. Shang, and R.D.K. Misra: Weld. World, 2017, vol. 61, pp. 1155–68.

    CAS  Google Scholar 

  2. X.L. Wang, Y.R. Nan, Z.J. Xie, Y.T. Tsai, J.R. Yang, and C.J. Shang: Mater. Sci. Eng. A, 2017, vol. 702, pp. 196–205.

    CAS  Google Scholar 

  3. S. Das, A. Ghosh, S. Chatterjee, and P.R. Rao: Mater. Charact., 2003, vol. 50, pp. 305–15.

    CAS  Google Scholar 

  4. Q. Wang, X. Zou, H. Matsuura, and C. Wang: Metall. Mater. Trans. B, 2017, vol. 49, pp. 18–22.

    Google Scholar 

  5. X. Li, M. Wang, Y.P. Bao, L.D. Xing, and J.H. Chu: Ironmak. Steelmak., 2018, pp. 1–5. https://doi.org/10.1080/03019233.2018.1540520.

  6. D. Zhang, H. Terasaki, and Y. Komizo: Acta Mater., 2010, vol. 58, pp. 1369–78.

    CAS  Google Scholar 

  7. S.W. Thompson, D.J. Vin Col, and G. Krauss: Metall. Trans. A, 1990, vol. 21, pp. 1493–1507.

    Google Scholar 

  8. H. Mohrbacher: J. Iron Steel Res. Int., 2011, pp. 785–91. https://doi.org/10.13228/j.boyuan.issn1006-706x.2011.s1.013.

  9. Y.J. Li, D. Ponge, P. Choi, and D. Raabe: Scripta Mater., 2015, vol. 96, pp. 13–16.

    CAS  Google Scholar 

  10. G. Shigesato, T. Fujishiro, and T. Hara: Mater. Sci. Eng. A, 2012, vol. 556, pp. 358–65.

    CAS  Google Scholar 

  11. O.M. Akselsen, Ø. Grong, and P.E. Kvaale: Metall. Trans. A, 1986, vol. 17, pp. 1529–36.

    Google Scholar 

  12. J. Bok Seol, G. Ho Gu, N. Suk Lim, S. Das, and C. Gyung Park: Ultramicroscopy, 2010, vol. 110, pp. 783–88.

    Google Scholar 

  13. S. Suzuki, M. Tanino, and Y. Waseda: ISIJ Int., 2002, vol. 42, pp. 676–78.

    CAS  Google Scholar 

  14. Y. Wu, X. Yuan, I. Kaldre, M. Zhong, Z. Wang, and C. Wang: Metall. Mater. Trans. B, 2023, vol. 54, pp. 50–55.

    CAS  Google Scholar 

  15. X. Xie, M. Zhong, I. Kaldre, Z. Qu, D. Wang, and C. Wang: Metall. Mater. Trans. A, 2023, vol. 54, pp. 1077–82.

    CAS  Google Scholar 

  16. X. Yuan, Y. Wu, M. Zhong, S. Basu, Z. Wang, and C. Wang: Sci. Technol. Weld. Join., 2022, vol. 27, pp. 683–90.

    CAS  Google Scholar 

  17. X. Yuan, M. Zhong, Y. Wu, and C. Wang: Metall. Mater. Trans. B, 2022, vol. 53, pp. 656–61.

    CAS  Google Scholar 

  18. W. Choi, H. Matsuura, and F. Tsukihashi: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1851–57.

    CAS  Google Scholar 

  19. H.S. Kim, H.-G. Lee, and K.-S. Oh: Metall. Mater. Trans. A, 2001, vol. 32, pp. 1519–25.

    Google Scholar 

  20. T. Liu, M.J. Long, D.F. Chen, Y.W. Huang, J. Yang, H.M. Duan, L.T. Gui, and P. Xu: Metall. Mater. Trans. B, 2020, vol. 51, pp. 338–52.

    CAS  Google Scholar 

  21. Y. Tanaka, F. Pahlevani, S. Moon, R. Dippenaar, and V. Sahajwalla: Sci. Rep., 2019, vol. 9, p. 10096.

    Google Scholar 

  22. Y. Wang and C. Liu: Metall. Mater. Trans. B, 2020, vol. 51, pp. 2585–95.

    Google Scholar 

  23. H. Yin, H. Shibata, T. Emi, and M. Suzuki: ISIJ Int., 1997, vol. 37, pp. 936–45.

    CAS  Google Scholar 

  24. J. Zeng, C. Zhu, W. Wang, and X. Li: Metall. Mater. Trans. B, 2020, vol. 51, pp. 2522–31.

    Google Scholar 

  25. Y. Shen, Z. Gu, and C. Wang: Metall. Mater. Trans. A, 2021, vol. 52, pp. 1581–87.

    CAS  Google Scholar 

  26. X. Zou, H. Matsuura, and C. Wang: Metall. Mater. Trans. B, 2019, vol. 50, pp. 1134–38.

    CAS  Google Scholar 

  27. Y. Shen, Z. Gu, and C. Wang: Acta Metall. Sin, 2023, https://doi.org/10.11900/0412.1961.2023.00045.

    Article  Google Scholar 

  28. X. Zou, J. Sun, H. Matsuura, and C. Wang: Metall. Mater. Trans. A, 2020, vol. 51, pp. 1044–50.

    CAS  Google Scholar 

  29. N. Kikuchi, S. Nabeshima, Y. Kishimoto, Y. Ishiguro, and S. Sridhar: ISIJ Int., 2009, vol. 49, pp. 1036–45.

    CAS  Google Scholar 

  30. S. Wu, C. Zhang, L. Zhu, Q. Zhang, and X. Ma: Scripta Mater., 2020, vol. 185, pp. 61–65.

    CAS  Google Scholar 

  31. D. Zhang, Y. Shintaku, S. Suzuki, and Y. Komizo: Metall. Mater. Trans. A, 2012, vol. 43, pp. 447–58.

    CAS  Google Scholar 

  32. M. Sharma, I. Ortlepp, and W. Bleck: Steel Res. Int., 2019, vol. 90, p. 1900133.

    CAS  Google Scholar 

  33. K. Banks, W. Stumpf, and A. Tuling: Mater. Sci. Eng. A, 2006, vol. 421, pp. 307–16.

    Google Scholar 

  34. R. Fountain and J. Chipman: Trans. Metall. Soc. AIME, 1962, vol. 224, pp. 599–605.

    CAS  Google Scholar 

  35. W.R. Thomas and G.M. Leak: Nature, 1955, vol. 176, pp. 29–31.

    CAS  Google Scholar 

  36. Q. Shu, V.-V. Visuri, T. Alatarvas, and T. Fabritius: Metall. Mater. Trans. B, 2022, vol. 53, pp. 2321–33.

    CAS  Google Scholar 

  37. K.C. Cho, D.J. Mun, Y.M. Koo, and J.S. Lee: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3556–61.

    Google Scholar 

  38. P.E. Busby, M.E. Warga, and C. Wells: JOM, 1953, vol. 5, pp. 1463–68.

    CAS  Google Scholar 

  39. H.C. Fiedler: Metall. Trans. A, 1978, vol. 9, pp. 1489–90.

    Google Scholar 

  40. Y. Chen, Y. Bao, M. Wang, X. Cai, L. Wang, and L. Zhao: ISIJ Int., 2014, vol. 54, pp. 2215–20.

    CAS  Google Scholar 

  41. K.C. Cho, D.J. Mun, M.H. Kang, J.S. Lee, J.K. Park, and Y.M. Koo: ISIJ Int., 2010, vol. 50, pp. 839–46.

    CAS  Google Scholar 

  42. S. Suzuki, K. Ichimiya, and T. Akita: in High tensile strength steel plates with excellent HAZ toughness for shipbuilding - JFE EWEL technology for excellent quality in HAZ of high heat input welded joints, JFE Tech. Rep., 2005, pp. 24–29.

  43. K. Sakuraya, H. Okada, and F. Abe: Energy Mater., 2006, vol. 1, pp. 158–66.

    CAS  Google Scholar 

  44. T. Iwamoto, T. Hoshino, A. Matsuzaki, and K. Amano: ISIJ Int., 2002, vol. 42, pp. S77-81.

    CAS  Google Scholar 

  45. K.A. Taylor and S.S. Hansen: Metall. Trans. A, 1990, vol. 21, pp. 1697–1708.

    Google Scholar 

  46. B. Hwang, D. Suh, and S. Kim: Scripta Mater., 2011, vol. 64, pp. 1118–20.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. U20A20277 and 52150610494), National Key Research and Development Plan of China (Grant No. 2022YFE0123300), and Spring Sunshine Plan (Chunhui) Research Project of Ministry of Education of China (Grant No. HZKY20220437).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Zhong, M., Li, Z. et al. Revealing Inclusion Evolution Behaviors During Hot-Rolling Heating of EH550 Offshore Engineering Steel. Metall Mater Trans B 54, 2865–2869 (2023). https://doi.org/10.1007/s11663-023-02887-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02887-1

Navigation