Skip to main content
Log in

Numerical Simulation of Particle Motion and Wall Scouring Behavior in Steelmaking Converter With Bottom Powder Injection

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The coupled Eulerian-multifluid VOF-granular flow model was built to simulate gas–liquid-particle three-phase flow in a 120-ton steelmaking converter with bottom powder injection. Particle transport phenomenon and wall scouring behavior is investigated, and effect of bottom-blowing parameters on particle volume fraction and velocity distribution and wall sheer stress are evaluated. Experimental data measured were compared with simulation results to verify accuracy of simulation results, and particle motion and phase interfaces shape are predicted satisfactorily well. Results show that bottom-blowing parameters have a significant influence on particle transport behavior. Increase of powder mass rate contributes to increase of particle velocity, but aggregation of particles occurs at higher powder mass rates. As powder mass rate increases, wall scouring is aggravated. Reduction of particle diameter facilitates the uniformity of particle distribution and weakens the wall scouring. Increase of bottom blowing flow rate improves particle distribution range and accelerates particle velocity, but aggravates wall scouring. Effect of powder injection on scouring of furnace and bottom walls are higher than that of other walls. Bottom injection powder observably increases the mechanical wear of bottom wall. Combined with analysis of simulation results, it is proposed that conditions favorable to powder injection process should be particle diameter not greater than 0.15 mm, particle mass rate not greater than 1.083 kg/s, and bottom blowing flow rate not less than 160 Nm3/h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. J. Cappel, F. Ahrenhold, M.W. Egger, H. Hiebler, and J. Schenk: Metals, 2022, vol. 12, pp. 912–43.

    CAS  Google Scholar 

  2. F. Wallner and E. Fritz: Metall. Res. Technol., 2002, vol. 99, pp. 825–37.

    CAS  Google Scholar 

  3. G. Wimmer, K. Pastucha, and E. Wimmer: in The 6th International Congress on the Science and Technology of Steelmaking, ICS, Beijing, 2015, pp. 140–42.

  4. K. Yoshiei, S. Toshikazu, F. Tetsuya, and N. Hiroshi: ISIJ Int., 1988, vol. 28, pp. 746–53.

    Google Scholar 

  5. P. Gittler, R. Kickinger, S. Pirker, E. Fuhrmann, J. Lehner, and J. Steins: Scand. J. Metall., 2000, vol. 29, pp. 166–76.

    CAS  Google Scholar 

  6. A.R.N. Meidani, M. Isac, A. Richardson, A. Cameron, and R.I.L. Guthrie: ISIJ Int., 2004, vol. 44, pp. 1639–45.

    CAS  Google Scholar 

  7. A. Nordquist, N. Kumbhat, L. Jonsson, and P. Jonsson: Steel Res. Int., 2006, vol. 77, pp. 82–90.

    CAS  Google Scholar 

  8. K.Y. Chu, H.H. Chen, P.H. Lai, H.C. Wu, Y.C. Liu, C.C. Lin, and M.J. Lu: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 948–62.

    Google Scholar 

  9. W.J. Wu, H.X. Yu, X.H. Wang, H.B. Li, and K. Liu: J. Iron Steel Res. Int., 2015, vol. 22, pp. 80–86.

    Google Scholar 

  10. J.K. Sun, J.S. Zhang, W.H. Lin, L.L. Cao, X.M. Feng, and Q. Liu: Steel Res. Int., 2021, vol. 92, pp. 2100178–79.

    Google Scholar 

  11. N. Asahara, K.I. Naito, I. Kitagawa, M. Matsuo, M. Kumakura, and M. Iwasaki: Steel Res. Int., 2011, vol. 82, pp. 587–94.

    CAS  Google Scholar 

  12. L.L. Cao, Q. Liu, Z. Wang, and N. Li: Ironmak. Steelmak., 2016, vol. 45, pp. 239–48.

    Google Scholar 

  13. O. Olivares, A. Elias, R. Sanchez, M. Diaz-Cruz, and R.D. Morales: Steel Res. Int., 2002, vol. 73, pp. 44–51.

    CAS  Google Scholar 

  14. X. Zhou, M. Ersson, L. Zhong, and P. Jönsson: Metall. Mater. Trans. B, 2015, vol. 47B, pp. 434–45.

    Google Scholar 

  15. M. Li, Q. Li, Z. Zou, and B. Li: JOM., 2018, vol. 71, pp. 729–36.

    Google Scholar 

  16. X. Zhou, Y. Liu, P. Ni, and S. Peng: Steel Res. Int., 2020, vol. 92, pp. 2000334–42.

    Google Scholar 

  17. Y. Li, W.T. Lou, and M.Y. Zhu: Ironmak. Steelmak., 2013, vol. 40, pp. 505–14.

    CAS  Google Scholar 

  18. H. J. Odenthal, U. Falkenreck, and J. Schlüter: in European Conference on Computational Fluid Dynamics, ed. P. Wesseling, Oñate E. and Périaux J. Delft University of Technology, Netherlands, 2006.

  19. V. Singh, J. Kumar, C. Bhanu, S.K. Ajmani, and S.K. Dash: ISIJ Int., 2007, vol. 47, pp. 1605–12.

    CAS  Google Scholar 

  20. J. Zhang, W. Lou, P. Shao, and M. Zhu: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 3585–3601.

    Google Scholar 

  21. J. Zhang, W. Lou, and M. Zhu: Metall. Mater. Trans. B, 2023, vol. 54B, pp. 1449–67.

    Google Scholar 

  22. M. Akhlaghi, V. Mohammadi, N.M. Nouri, M. Taherkhani, and M. Karimi: Chem. Eng. Res. Des., 2019, vol. 152, pp. 48–59.

    CAS  Google Scholar 

  23. A. Kumar, D. Ghosh, and S. Ghosh: J. Braz. Soc. Mech. Sci. Eng., 2020, vol. 42, pp. 572–602.

    Google Scholar 

  24. H. Liu, W. Zhang, M. Jia, Y. Yan, and Y. He: Comput. Fluids, 2018, vol. 177, pp. 20–32.

    Google Scholar 

  25. K. Song and A. Jokilaakso: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 1772–88.

    Google Scholar 

  26. C.K.K. Lun, S.B. Savage, D.J. Jeffrey, and N. Chepurniy: J. Fluid Mech., 2006, vol. 140, pp. 223–56.

    Google Scholar 

  27. S.H. Hosseini, M. Fattahi, and G. Ahmadi: J. Taiwan Inst. Chem. Eng., 2016, vol. 58, pp. 107–16.

    CAS  Google Scholar 

  28. B.K. Singh, S. Roy, and V.V. Buwa: Ind. Eng. Chem. Res., 2021, vol. 60, pp. 17677–93.

    CAS  Google Scholar 

  29. M.T. Islam and A.V. Nguyen: Chem. Eng. Res. Des., 2020, vol. 159, pp. 13–26.

    CAS  Google Scholar 

  30. N.B. Ballal and A. Ghosh: Metall. Mater. Trans. B, 1981, vol. 12B, pp. 525–34.

    CAS  Google Scholar 

  31. V.B. Okhotskii: Refract. Ind. Ceram., 2001, vol. 42, pp. 411–16.

    CAS  Google Scholar 

  32. M.S. Lee, S. O’Rourke, and N.A. Molloy: Ironmak. Steelmak., 2013, vol. 28, pp. 244–49.

    Google Scholar 

  33. X. Zhou, M. Ersson, L. Zhong, and P.G. Jönsson: Steel Res. Int., 2015, vol. 86, pp. 1328–38.

    CAS  Google Scholar 

  34. Q. Li, M. Li, S.B. Kuang, and Z. Zou: JOM, 2016, vol. 68, pp. 3126–33.

    CAS  Google Scholar 

  35. J. Sun, J. Zhang, W. Lin, X. Feng, and Q. Liu: Metals, 2022, vol. 12, pp. 117–35.

    Google Scholar 

  36. Inc.: FLUENT, 2022 R1 Fluent Theory Guide, Fluent Inc., Lebanon, NH, 2022, p. 2022.

  37. A.D. Burns, T. Frank, I. Hamill, and J.M. Shi: in 5th international conference on multiphase flow, ICMF, (ICMF: 2004), pp. 1–17.

  38. M. Sano and K. Mori: Tetsu To Hagane-J. Iron Steel Inst. Jpn., 1976, vol. 17, pp. 344–52.

    Google Scholar 

  39. D. Gidaspow, R. Bezburuah, and J. Ding: in Fluidization VII, Proceedings of the 7th Engineering Foundation Conference on Fluidization., 1992, pp 75-82.

  40. D.G. Schaeffer: J. Differ. Equ., 1987, vol. 66, pp. 19–50.

    Google Scholar 

  41. P.C. Johnson and R. Jackson: J. Fluid Mech., 2006, vol. 176, pp. 67–93.

    Google Scholar 

  42. C.K.K. Lun and S.B. Savage: Acta Mech., 1986, vol. 63, pp. 15–44.

    Google Scholar 

  43. W. Lou and M. Zhu: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1251–63.

    Google Scholar 

  44. J.S. Zhang, W.T. Lou, and M.Y. Zhu: J. Iron Steel Res. Int., 2022, vol. 29, pp. 1771–88.

    Google Scholar 

  45. J. Sun, J. Zhang, R. Jiang, X. Feng, and Q. Liu: Steel Res. Int., 2023, vol. 94, pp. 2200532–45.

    CAS  Google Scholar 

  46. G. Wang, S. Zhou, J.B. Joshi, G.J. Jameson, and G.M. Evans: Miner. Eng., 2014, vol. 69, pp. 165–69.

    CAS  Google Scholar 

  47. J.P. Mollicone, M. Sharifi, F. Battista, P. Gualtieri, and C.M. Casciola: Phys. Fluids, 2019, vol. 31, p. 101301.

    Google Scholar 

  48. S. Kalenko and A. Liberzon: Int. J. Multiph. Flow, 2020, vol. 133, p. 103451.

    CAS  Google Scholar 

  49. T.C.W. Lau and G.J. Nathan: J. Fluid Mech., 2016, vol. 809, pp. 72–110.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. U20A20272) and the Fundamental Research Funds for the Central Universities, NEU, (No. N2025017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wentao Lou or Miaoyong Zhu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Lou, W. & Zhu, M. Numerical Simulation of Particle Motion and Wall Scouring Behavior in Steelmaking Converter With Bottom Powder Injection. Metall Mater Trans B 54, 3031–3048 (2023). https://doi.org/10.1007/s11663-023-02886-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02886-2

Navigation