Skip to main content
Log in

Elucidating Electrical Conductive Mechanisms for CaF2–SiO2–CaO–TiO2 Welding Fluxes

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Total electrical conductivity of CaF2–SiO2–CaO–TiO2 welding fluxes has been investigated using the four-electrode method, and the underpinning conductive mechanisms have been clarified. To quantify the contribution of the electronic/ionic conductivity to the total electrical conductivity, electronic transference numbers have been measured using the stepped potential chronoamperometry method. The results show that electronic and ionic conductivity of the fluxes increases with higher temperature, thereby increasing the total electrical conductivity, which indicates that conductivity in the molten fluxes is a thermally activated process. Higher TiO2 content favors electronic conductivity as improved Ti3+/Ti4+ mass ratio facilitates electron hopping. However, electronic conductivity decreases with increasing TiO2 content, which is accompanied by the enhanced degree of depolymerization of the silicate network. In addition, the conductive mechanism of the fluxes is controlled by an electronic-ionic mixed mode. The increased value of electronic conductivity is significantly greater than the reduced value of ionic conductivity with higher TiO2 content, resulting in a net increase for the total electrical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. V. Sengupta, D. Havrylov, and P.F. Mendez: Weld. J., 2019, vol. 98, pp. 283s–313s.

    Google Scholar 

  2. C. Wang and J. Zhang: Acta Metall. Sin., 2021, vol. 57, pp. 1126–40.

    CAS  Google Scholar 

  3. T. Lienert, T. Siewert, S. Basu and V. Acoff: ASM Handbook, Volume 6A: Welding Fundamentals and Processes, ASM International Materials Park, OH, 2011, pp. 55–63

  4. Z. Wang, X. Zheng, M. Zhong, Z. Li, and C. Wang: J. Non-Cryst. Solids, 2022, vol. 591, 121716.

    CAS  Google Scholar 

  5. H. Yuan, Z. Wang, Y. Zhang, and C. Wang: J. Mol. Liq., 2023, vol. 386, 122501.

    CAS  Google Scholar 

  6. A. Polar, J.E. Indacochea, and M. Blander: Weld. J., 1990, pp. 68s-74s.

  7. H. Komen, M. Shigeta, M. Tanaka, Y. Abe, T. Fujimoto, M. Nakatani, and A.B. Murphy: Int. J. Heat Mass Transf., 2021, vol. 171, 121062.

    CAS  Google Scholar 

  8. Z. Pang, X. Lv, Z. Yan, D. Liang, and J. Dang: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 385–94.

    Google Scholar 

  9. X. Yan, W. Pan, X. Wang, X. Zhang, S. He, and Q. Wang: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 2526–35.

    Google Scholar 

  10. L. Zhou, H. Wu, W. Wang, H. Luo, X. Yan, and Y. Yang: Ceram. Int., 2021, pp. 232-38.

  11. P. Zhang, J. Liu, Z. Wang, G. Qian, and W. Ma: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 304–11.

    Google Scholar 

  12. J. Zhu, Y. Hou, W. Zheng, G. Zhang, and K. Chou: ISIJ Int., 2019, vol. 59, pp. 1947–55.

    CAS  Google Scholar 

  13. S.B. Sarkar: ISIJ Int., 1989, vol. 29, pp. 348–51.

    CAS  Google Scholar 

  14. K. Hu, R. Zhang, S. Li, X. Lv, J. Dang, and Z. You: Chin. J. Nonferrous Met., 2019, vol. 29, pp. 161–69.

    Google Scholar 

  15. S. Martin-Treceno, A. Allanore, C.M. Bishop, M.J. Watson, and A.T. Marshall: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 798–806.

    Google Scholar 

  16. N. Shinozaki, K. Mizoguchi, and Y. Suginohara: J. Jpn. Inst. Met., 1978, vol. 42, pp. 162–68.

    CAS  Google Scholar 

  17. K. Mori: Tetsu-to-Hagane, 1956, vol. 42, pp. 1024–29.

    CAS  Google Scholar 

  18. T. Gabriella, O. Ostrovski, and J. Sharif: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 61–67.

    Google Scholar 

  19. C.B. Dallam, S. Liu, and D.L. Olson: Weld. J., 1985, vol. 64, pp. 140–51.

    Google Scholar 

  20. L. Sharma and R. Chhibber: SILICON, 2019, vol. 11, pp. 2763–73.

    CAS  Google Scholar 

  21. S. Kou: Welding Metallurgy, 2nd ed. John Wiley & Sons Inc, New Jersey, 2002, pp. 65–96.

    Google Scholar 

  22. Y. Zhang, J. Zhang, H. Liu, Z. Wang, and C. Wang: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 1329–334.

    Google Scholar 

  23. X. Yuan, Y. Wu, M. Zhong, S. Basu, Z. Wang, and C. Wang: Sci. Technol. Weld. Joi., 2022, vol. 27, pp. 683–90.

    CAS  Google Scholar 

  24. A.M. Paniagua-Mercado, V.M. Lopez-Hirata, H.J. Dorantes-Rosales, P.E. Diaz, and E.D. Valdez: Mater. Charact., 2009, vol. 60, pp. 36–39.

    CAS  Google Scholar 

  25. Y. Wu, X. Yuan, I. Kaldre, M. Zhong, Z. Wang, and C. Wang: Metall. Mater. Trans. B, 2023, vol. 54B, pp. 50–55.

    Google Scholar 

  26. G. Zhang, Q. Xue, and K. Chou: Ironmak. Steelmak., 2011, vol. 38, pp. 149–54.

    CAS  Google Scholar 

  27. G. Zhang, B. Yan, K. Chou, and F. Li: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 261–64.

    Google Scholar 

  28. J. Swenson and S. Adams: Phys. Rev. Lett., 2003, vol. 90, 155507.

    Google Scholar 

  29. Y. Zhang, T. Coetsee, H. Yang, T. Zhao, and C. Wang: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 1947–52.

    Google Scholar 

  30. M. Barati and K.S. Coley: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 41–49.

    CAS  Google Scholar 

  31. M. Gouverneur, J. Kopp, L. van Wüllen, and M. Schönhoff: Phys. Chem. Chem. Phys., 2015, vol. 17, pp. 30680–86.

    CAS  Google Scholar 

  32. J. Liu, G. Zhang, Y. Wu, and K. Chou: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 798–803.

    Google Scholar 

  33. Y. Zhang, Z. Wang, J. Zhang, Z. Li, S. Basu, and C. Wang: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 2814–23.

    Google Scholar 

  34. Y. Chen, J. Yang, X. Zhang, Q. Wang, Q. Wang, and S. He: Comput. Mater. Sci., 2022, vol. 205, 111223.

    CAS  Google Scholar 

  35. C. Wang, Z. Wang, and J. Yang: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 693–701.

    Google Scholar 

  36. Z. Su: Flux Properties and Uses, China Machine Press, Beijing, 1989, pp. 379–441.

    Google Scholar 

  37. S. Sokhanvaran, S. Thomas, and M. Barati: Electrochim. Acta, 2012, vol. 66, pp. 239–44.

    CAS  Google Scholar 

  38. T. Coetsee and F. De Bruin: Processes, 2022, vol. 10, 2524.

    Google Scholar 

  39. J. Nowotny, T. Bak, M.K. Nowotny, and L.R. Sheppard: J. Phys. Chem. C, 2008, vol. 112, pp. 590–601.

    CAS  Google Scholar 

  40. N.A. Fried, K.G. Rhoads, and D.R. Sadoway: Electrochim. Acta, 2001, vol. 46, pp. 3351–58.

    CAS  Google Scholar 

  41. M. Barati and K.S. Coley: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 51–60.

    CAS  Google Scholar 

  42. K.C. Mills: ISIJ Int., 1993, vol. 33, pp. 148–55.

    CAS  Google Scholar 

  43. A.S. Ali, I. Khan, B. Zhang, M. Razum, L. Pavić, A. Šantić, P.A. Bingham, K. Nomura, and S. Kubuki: J. Non-Cryst. Solids, 2021, vol. 553, 120510.

    CAS  Google Scholar 

  44. Y. Shao, K. Shigenobu, M. Watanabe, and C. Zhang: J. Phys. Chem. B, 2020, vol. 124, pp. 4774–80.

    CAS  Google Scholar 

  45. H. Tian, Z. Wang, T. Zhao, and C. Wang: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 232–41.

    Google Scholar 

  46. H. Kusumoto, R.G. Hill, N. Karpukhina, and R.V. Law: J. Non-Cryst. Solids, 2019, vol. 1, 100008.

    CAS  Google Scholar 

  47. A. Stamboulis, R.G. Hill, and R.V. Law: J. Non-Cryst. Solids, 2005, vol. 351, pp. 3289–95.

    CAS  Google Scholar 

  48. S. Seetharaman, A. McLean, R. Guthrie, and S. Sridhar: Treatise on Process Metallurgy, Elsevier Ltd., Oxford, 2014, pp. 151–59.

    Google Scholar 

  49. B.O. Mysen, F.J. Ryerson, and D. Virgo: Am. Mineral., 1980, vol. 65, pp. 1150–65.

    CAS  Google Scholar 

  50. B. Mysen: ISIJ Int., 2021, vol. 61, pp. 2866–81.

    CAS  Google Scholar 

  51. Z. Wang, Z. Li, M. Zhong, Z. Li, and C. Wang: J. Non-Cryst. Solids, 2023, vol. 601, 122071.

    CAS  Google Scholar 

  52. K. Hu, X. Lv, W. Yu, Z. Yan, W. Lv, and S. Li: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 2982–92.

    Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. U20A20277, 52104295, and 52150610494), National Key Research and Development Plan of China (Grant No. 2022YFE0123300), Research Fund for Central Universities (Grant No. N2325005), and Young Elite Scientists Sponsorship Program by CAST (YESS) (Grant No. 2021-2023QNRC001).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yuan, H., Tian, H. et al. Elucidating Electrical Conductive Mechanisms for CaF2–SiO2–CaO–TiO2 Welding Fluxes. Metall Mater Trans B 54, 3023–3030 (2023). https://doi.org/10.1007/s11663-023-02885-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02885-3

Navigation