Skip to main content
Log in

Numerical Simulation on Electron Beam Smelting Temperature Field of Novel Ni–Co-Based Superalloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this study, a three-dimensional (3D) transient thermal model for electron beam smelting (EBS) of a novel Ni–Co-based superalloy was developed using ANSYS FLUENT software. The model incorporated temperature-dependent material thermal-physical parameters and a rotating Gaussian body heat source. Parameters for the moving electron beam were also considered in the model as the user-defined functions (UDFs). The main objective of this research was to gain a better understanding of the thermal behavior of the molten pool during the EBS process. Experiments were conducted using the SEBM-30A EB furnace. The average surface temperature of the molten pool calculated from volatilization loss of Ni element during the EBS process was compared with the average surface temperature of the molten pool monitored by numerical simulation. The results show that the errors are 0.47 and 7.15 pct at EBS power of 10 and 14 kW, respectively. The simulation results are in good agreement with the experiment results. The temperature of molten pool rises with increasing smelting power, and its depth and width also increase. The temperature gradually rises along the z-direction, and the highest temperature occurs 2 mm below the top surface of the ingot. The relationship between average surface temperature of molten pool and smelting power was obtained. Overall, our research provides significant insights into the thermal behavior of the molten pool during the EBS process. The model can be used to optimize the EBS process to reduce costs and produce high-quality ingots, and provides the basis for modeling the preparation of large ingots from EBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time, as the data also forms part of an ongoing study. The authors will happily share data with anyone interested upon request.

Abbreviations

EBS:

Electron beam smelting

3D:

Three-dimensional

UDFs:

User-defined functions

VIM:

Vacuum induction melting

ESR:

Electroslag remelting

VAR:

Vacuum arc remelting

EBFF:

Electron beam free forming

EBMR:

Electron beam melting and refining

EBM:

Electron beam melting

U :

Acceleration voltage

I :

Beam current

v :

Scanning speed

ρ :

Density

k :

Thermal conductivity

c p :

Specific heat capacity

H :

Mixed enthalpy

t :

Time

h(T):

Enthalpy term

L :

Latent heat of fusion

β l :

Liquid fraction

ΔH :

Latent heat of phase change

T Solidus :

Solidus temperature

T Liquidus :

Liquidus temperature

T ref :

Reference temperature

\(\mathop{n}\limits^{\rightharpoonup} \) :

Normal vector of free surface

S E :

Energy source term

Q rad :

Surface heat irradiation flux

\(\varepsilon\) :

Emissivity of the superalloy surface

\(\sigma\) :

Stephan–Boltzmann constant

\(T_{\infty }\) :

Far-field temperature

\(h_{c}\) :

Heat transfer coefficient

\(q_{m}\) :

Peak power density

r s :

Scanning radius

h :

Absolute penetration depth of the electron beam

η :

Effective power coefficient

\(r_{0}\) :

Radius of electron beam spot

\(P_{i}^{0}\) :

Saturated vapor pressure of pure component i

\(V_{i}\) :

Theoretical evaporation rate

R :

Ideal gas constant

\(\alpha_{i}\) :

Activity of component i

\(M_{i}\) :

Molar mass of the evaporating components

\(\gamma_{i}\) :

Activity coefficient

\(\chi_{i}\) :

Molar fraction

\(\Delta \overline{G}_{i}^{{{\text{ex}}}}\) :

Partial excess Gibbs energy

\(\Delta m_{ie}\) :

Mass loss of component i

\(S\) :

Melt surface evaporation area

\(V_{ie}\) :

Evaporation rate during the experiment

T :

Surface average temperature

P :

Electron beam power

R 2 :

Correlation coefficient

References

  1. Y. Yuan, Y.F. Gu, Z.H. Zhong, T. Osada, C.Y. Cui, T. Tetsui, T. Yokokawa, and H. Harada: J. Microsc., 2012, vol. 248, pp. 34–41.

    CAS  Google Scholar 

  2. X.M. Chen, Y.C. Lin, and F. Wu: J. Alloys Compd., 2017, vol. 724, pp. 198–207.

    CAS  Google Scholar 

  3. Y.C. Lin, H. Yang, and L. Li: Vacuum, 2017, vol. 144, pp. 86–93.

    CAS  Google Scholar 

  4. X.M. Chen, Y.C. Lin, X.H. Li, M.S. Chen, and W.Q. Yuan: Vacuum, 2018, vol. 149, pp. 1–11.

    Google Scholar 

  5. Y.C. Lin, F.Q. Nong, X.M. Chen, D.D. Chen, and M.S. Chen: Vacuum, 2017, vol. 137, pp. 104–114.

    CAS  Google Scholar 

  6. Y.C. Lin, F. Wu, Q.W. Wang, D.D. Chen, and S.K. Singh: Vacuum, 2018, vol. 151, pp. 283–93.

    CAS  Google Scholar 

  7. H. Cui, Y. Tan, R. Bai, Y. Li, X. Zhuang, Z. Chen, X. You, P. Li, and C. Cui: Mater. Charact., 2021, https://doi.org/10.1016/j.matchar.2021.111668.

    Article  Google Scholar 

  8. Y. Gu, H. Harada, C. Cui, D. Ping, A. Sato, and J. Fujioka: Scr. Mater., 2006, vol. 55, pp. 815–18.

    CAS  Google Scholar 

  9. C.Y. Cui, Y.F. Gu, D.H. Ping, H. Harada, and T. Fukuda: Mater. Sci. Eng. A, 2008, vol. 485, pp. 651–56.

    Google Scholar 

  10. C.Y. Cui, Y.F. Gu, D.H. Ping, T. Fukuda, and H. Harada: Mater. Trans., 2008, vol. 49, pp. 424–27.

    CAS  Google Scholar 

  11. C.Y. Cui, Y.F. Gu, Y. Yuan, T. Osada, and H. Harada: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5465–69.

    CAS  Google Scholar 

  12. X. Zhuang, Y. Tan, L. Zhao, X. You, P. Li, and C. Cui: J. Mater. Res. Technol., 2020, vol. 9, pp. 5422–30.

    CAS  Google Scholar 

  13. R. Zhang, C. Tian, C. Cui, Y. Zhou, and X. Sun: J. Alloys Compd., 2020, vol. 818, 152863.

    CAS  Google Scholar 

  14. C. Cui, R. Zhang, Y. Zhou, and X. Sun: J. Mater. Sci. Technol., 2020, vol. 51, pp. 16–31.

    CAS  Google Scholar 

  15. R. Zhang, P. Liu, C. Cui, J. Qu, B. Zhang, J. Du, Y. Zhou, and X. Sun: Jinshu Xuebao/Acta Metall. Sin., 2021, vol. 57, pp. 1215–28.

    CAS  Google Scholar 

  16. L. Gao, H.G. Huang, C. Kratzsch, H.M. Zhang, K. Chattopadhyay, Y.H. Jiang, and R. Zhou: Int. J. Heat Mass Transf., 2020, vol. 147, p. 118976.

    CAS  Google Scholar 

  17. J.P. Bellot, J. Jourdan, J.S. Kroll-Rabotin, T. Quatravaux, and A. Jardy: Materials, 2021, vol. 14, pp. 1–14.

    Google Scholar 

  18. K. Vutova, V. Vassileva, V. Stefanova, D. Amalnerkar, and T. Tanaka: Metals, 2019, vol. 9, pp. 1–9.

    Google Scholar 

  19. X. You, Y. Tan, H. Zhang, X. Zhuang, L. Zhao, P. Li, and Y. Wang: Scr. Mater., 2020, vol. 187, pp. 395–401.

    CAS  Google Scholar 

  20. S. Niu, L. Zhao, X. You, Y. Wang, and Y. Tan: Mater. Charact., 2021, vol. 179, 111330.

    CAS  Google Scholar 

  21. B. Su, D. Chen, Z. Wang, R. Ma, Y. Li, and S. Xia: Rare Met. Mater. Eng., 2019, vol. 48, pp. 711–15.

    CAS  Google Scholar 

  22. Y. Tan, S. Wen, S. Shi, D. Jiang, W. Dong, and X. Guo: Vacuum, 2013, vol. 95, pp. 18–24.

    CAS  Google Scholar 

  23. M. Jun, T.A.O. Gang, W. Peng, X.U. Ning, and L.I. Zhao: J. Ordnance Equip. Eng., 2021, vol. 42, pp. 14–21.

    Google Scholar 

  24. L. Dongwei, W. Feng, D. Jing, and Z. Xiaohua: J. Ordnance Equip. Eng., 2021, vol. 42, pp. 247–51.

    Google Scholar 

  25. P. Analysis, P. Deformation, I. Control, and S. Based: J. Ordnance Equip. Eng., 2021, vol. 42, pp. 244–49.

    Google Scholar 

  26. S. Wang, K. Yu, and L. Xing: Adv. Mater. Res., 2012, vol. 418–420, pp. 1640–46.

    Google Scholar 

  27. Q. Tang, S. Pang, B. Chen, H. Suo, and J. Zhou: Int. J. Heat Mass Transf., 2014, vol. 78, pp. 203–15.

    CAS  Google Scholar 

  28. J. Ou, S.L. Cockcroft, D.M. Maijer, L. Yao, C. Reilly, and A. Akhtar: Int. J. Heat Mass Transf., 2015, vol. 86, pp. 221–33.

    CAS  Google Scholar 

  29. K. Vutova and V. Donchev: Materials, 2013, vol. 6, pp. 4626–40.

    Google Scholar 

  30. M. Jamshidinia. F. Kong, R. Kovacevic: in Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition IMECE2012, 2012.

  31. Q. You, H. Yuan, L. Zhao, J. Li, X. You, S. Shi, Y. Tan, and X. Ding: Vacuum, 2018, vol. 156, pp. 39–47.

    CAS  Google Scholar 

  32. G. Chen, J. Liu, X. Shu, H. Gu, and B. Zhang: Int. J. Heat Mass Transf., 2019, vol. 138, pp. 879–88.

    CAS  Google Scholar 

  33. W. Liu, S. Liu, L. Long, Y. Ma, and Y. Liu: Xiyou Jinshu/Chinese J. Rare Met., 2014, vol. 38, pp. 666–73.

    Google Scholar 

  34. Y. Luo, J. Liu, and H. Ye: Vaccum, 2010, vol. 84, pp. 857–63.

    CAS  Google Scholar 

  35. N. Raghavan, R. Dehoff, S. Pannala, S. Simunovic, M. Kirka, J. Turner, N. Carlson, and S.S. Babu: Acta Mater., 2016, vol. 112, pp. 303–14.

    CAS  Google Scholar 

  36. Y.S. Lee, M.M. Kirka, R.B. Dinwiddie, N. Raghavan, J. Turner, R.R. Dehoff, and S.S. Babu: Addit. Manuf., 2018, vol. 22, pp. 516–27.

    CAS  Google Scholar 

  37. W. Yilin, T. Yi, C. Chuanyong: Mater. Rep.

  38. Q. You, H. Yuan, X. You, J. Li, L. Zhao, S. Shi, and Y. Tan: Vacuum, 2017, vol. 145, pp. 116–22.

    CAS  Google Scholar 

  39. V. Juechter, T. Scharowsky, R.F. Singer, and C. Körner: Acta Mater., 2014, vol. 76, pp. 252–58.

    CAS  Google Scholar 

  40. Q. You, S. Shi, X. You, Y. Tan, Y. Wang, and J. Li: Vacuum, 2017, vol. 135, pp. 135–41.

    CAS  Google Scholar 

  41. G. Dong, X. You, Z. Xu, Y. Wang, and Y. Tan: Vacuum, 2022, vol. 195, 110641.

    CAS  Google Scholar 

  42. I. Langmuir: Phys. Rev., 1913, vol. II, pp. 329–42.

    Google Scholar 

  43. J. Safarian and M. Tangstad: High Temp. Mater. Process., 2012, vol. 31, pp. 73–81.

    CAS  Google Scholar 

  44. D.C. Jiang, Y. Tan, S. Shi, Q. Xu, W. Dong, Z. Gu, and R.X. Zou: Mater. Res. Innov., 2011, vol. 15, pp. 406–09.

    CAS  Google Scholar 

  45. Y. Li, Y. Tan, X. You, H. Cui, P. Li, Y. Wang, and Q. You: Vacuum, 2021, https://doi.org/10.1016/j.vacuum.2021.110212.

    Article  Google Scholar 

  46. L. Zhao, Y. Tan, S. Shi, X. You, P. Li, and C. Cui: J. Alloys Compd., 2020, vol. 833, 155019.

    CAS  Google Scholar 

  47. V. Stefanova, K. Vutova, and V. Vassileva: J. Phys. Conf. Ser., 2022, https://doi.org/10.1088/1742-6596/2240/1/012034.

    Article  Google Scholar 

  48. B. Chen, Z.H. Du, K. Liu, X.J. Zhang, and Z.H. Wang: Vacuum, 2019, https://doi.org/10.1016/j.vacuum.2019.109014.

    Article  Google Scholar 

  49. X. You, G. Dong, H. Zhou, H. Zhang, Y. Tan, Y. Wang, P. Li, Q. You, Y. Li, H. Cui, Y. Liu, and H. Yuan: Sep. Technol. Purif., 2022, https://doi.org/10.1016/j.seppur.2022.122290.

    Article  Google Scholar 

  50. G. Dong, X. You, L. Dong, Y. Yiliti, Z. Xu, H. Zhou, Y. Wang, and Y. Tan: J. Mater. Res. Technol., 2022, vol. 20, pp. 4297–4305.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the National Key R&D Program of China (Grant No. 2019YFA0705300), the Fundamental Research Funds for the Central Universities (Grant No. DUT21ZD404), the Innovation Team Project for Key Fields of Dalian (Grant No. 2019RT13). This work was also supported by Open Project of State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University (SKLASS 2021-09) and the Science and Technology Commission of Shanghai Municipality (Nos. 19DZ2270200, 20511107700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Tan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 9178 KB)

Supplementary file2 (MP4 2934 KB)

Supplementary file3 (MP4 8738 KB)

Supplementary file4 (MP4 2860 KB)

Supplementary file5 (MP4 8336 KB)

Supplementary file6 (MP4 2828 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, L., Tan, Y., Wen, S. et al. Numerical Simulation on Electron Beam Smelting Temperature Field of Novel Ni–Co-Based Superalloy. Metall Mater Trans B 54, 2965–2984 (2023). https://doi.org/10.1007/s11663-023-02881-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02881-7

Navigation