Skip to main content

Advertisement

Log in

Electrosynthesis and Evaluation of Homogeneous CoCrNi Medium-Entropy Alloys for Structural Applications

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Medium-entropy alloys (MEAs) have received increasing attention for various applications due to their excellent properties. This work demonstrates a facile electrolysis method to directly prepare homogeneous CoCrNi MEAs from mixed metal oxide precursors in molten CaCl2. The obtained CoCrNi MEAs with typical face-centered cubic structure show nodular particle morphology. The influences of electrolytic parameters on the cathodic samples were investigated, and the results show that tunable phase composition and particle size of the samples can be achieved by controlling the electrolysis time and temperature. The electrolytic intermediate samples have been systematically characterized and analyzed, and the electrochemical synthesis mechanism of CoCrNi MEAs has been proposed, which typically involves electrochemical deoxidation and in-situ alloying processes. Additionally, the electrochemically synthesized CoCrNi MEAs has been processed into bulk CoCrNi MEAs to further investigate and evaluate their mechanical properties for possible structural applications. The as-synthesized CoCrNi MEA shows the comparable yield strength, tensile strength, fracture elongation, and hardness of 994 MPa, 1183 MPa, 14 pct, and 412 Hv, respectively, exhibiting an excellent engineering strength-ductility combination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R.O. Ritchie, and Q. Yu: Nature, 2019, vol. 574, pp. 223–27.

    Article  CAS  Google Scholar 

  2. D.B. Miracle and O.N. Senkov: Acta Mater., 2017, vol. 122, pp. 448–11.

    Article  CAS  Google Scholar 

  3. X. Du, W. Li, H. Chang, T. Yang, G. Duan, B. Wu, J. Huang, F. Chen, C. Liu, and W. Chuang: Nat. commun., 2020, vol. 11, pp. 1–7.

    Article  Google Scholar 

  4. N. Hua, W. Wang, Q. Wang, Y. Ye, S. Lin, L. Zhang, Q. Guo, J. Brechtl, and P.K. Liaw: J. Alloys Compds., 2021, vol. 861, 157997.

    Article  CAS  Google Scholar 

  5. O.N. Senkov, D.B. Miracle, K.J. Chaput, and J.P. Couzinie: J. Mater. Res., 2018, vol. 33, pp. 3092–28.

    Article  CAS  Google Scholar 

  6. G. Qin, R. Chen, P.K. Liaw, Y. Gao, L. Wang, Y. Su, H. Ding, J. Guo, and X. Li: Nanoscale, 2020, vol. 12, pp. 3965–76.

    Article  CAS  Google Scholar 

  7. P. Kumari, A.K. Gupta, R.K. Mishra, M.S. Ahmad, and R.R. Shahi: J. Magn. Magn. Mater., 2022, vol. 554, 169142.

    Article  CAS  Google Scholar 

  8. Y. Yang, T. Chen, L. Tan, J.D. Poplawsky, K. An, Y. Wang, G.D. Samolyuk, K. Littrell, A.R. Lupini, A. Borisevich, and E.P. George: Nature, 2021, vol. 595, pp. 245–49.

    Article  CAS  Google Scholar 

  9. U. Bhandari, C. Zhang, C. Zeng, S. Guo, and S. Yang: J. Mater. Res. Technol., 2020, vol. 9, pp. 8929–36.

    Article  CAS  Google Scholar 

  10. A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila, L. de Biasi, C. Kübel, T. Brezesinski, S.S. Bhattacharya, and H. Hahn: Nat. commun., 2018, vol. 9, pp. 1–9.

    Article  Google Scholar 

  11. C. Peng, H. Tang, Y. He, X. Lu, P. Jia, G. Liu, Y. Zhao, and M. Wang: J. Mater. Sci. Technol., 2020, vol. 51, pp. 161–66.

    Article  CAS  Google Scholar 

  12. J.X. Yang, B.H. Dai, C.Y. Chiang, I.C. Chiu, C.W. Pao, S.Y. Lu, I.Y. Tsao, S.T. Lin, C.T. Chiu, and J.W. Yeh: ACS Nano, 2021, vol. 15, pp. 12324–33.

    Article  CAS  Google Scholar 

  13. X.F. Wang, X.G. Wang, Q.Q. Yang, H.L. Dong, C. Zhang, G.J. Zhang, and D.Y. Jiang: J. Am. Ceram. Soc., 2021, vol. 104, pp. 2436–41.

    Article  CAS  Google Scholar 

  14. K. Chen, Y. Chen, J. Zhang, Y. Song, X. Zhou, M. Li, X. Fan, J. Zhou, and Q. Huang: Ceram. Int., 2021, vol. 47, pp. 7582–87.

    Article  CAS  Google Scholar 

  15. Y. Yang, T. Chen, L. Tan, J.D. Poplawsky, K. An, Y. Wang, G.D. Samolyuk, K. Littrell, A.R. Lupini, and A. Borisevich: Nature, 2021, vol. 595, pp. 245–49.

    Article  CAS  Google Scholar 

  16. Y. Kuzminova, D. Firsov, S. Dagesyan, S. Konev, S. Sergeev, A. Zhilyaev, M. Kawasaki, I. Akhatov, and S. Evlashin: J. Alloys Compds., 2021, vol. 863, 158609.

    Article  CAS  Google Scholar 

  17. J.M. Torralba, P. Alvaredo, and A. García-Junceda: Powder Metall., 2019, vol. 62, pp. 84–114.

    Article  CAS  Google Scholar 

  18. J. Wang, H. Yang, J. Ruan, Y. Wang, and S. Ji: J. Mater. Res., 2019, vol. 34, pp. 2126–36.

    Article  CAS  Google Scholar 

  19. R. Zhao, B. Ren, G. Zhang, Z. Liu, B. Cai, and J. Zhang: J. Magn. Magn. Mater., 2019, vol. 491, 165574.

    Article  CAS  Google Scholar 

  20. K. Cheng, J. Chen, S. Stadler, and S. Chen: Appl. Surf. Sci., 2019, vol. 478, pp. 478–86.

    Article  CAS  Google Scholar 

  21. F. Shu, S. Liu, H. Zhao, W. He, S. Sui, J. Zhang, P. He, and B. Xu: J. Alloys Compds., 2018, vol. 731, pp. 662–66.

    Article  CAS  Google Scholar 

  22. B. Li, L. Zhang, Y. Xu, Z. Liu, B. Qian, and F. Xuan: Powder Technol., 2020, vol. 360, pp. 509–21.

    Article  CAS  Google Scholar 

  23. G.Z. Chen, D.J. Fray, and T.W. Farthing: Nature, 2000, vol. 407, pp. 361–64.

    Article  CAS  Google Scholar 

  24. K. Mohandas: Miner. Proc. Ext. Metall., 2013, vol. 122, pp. 195–212.

    Article  CAS  Google Scholar 

  25. X. Xi, M. Feng, L. Zhang, and Z. Nie: Int. J. Miner. Met. Mater., 2020, vol. 27, pp. 1599–17.

    Article  CAS  Google Scholar 

  26. H. Jiao, M. Wang, J. Tu, and S. Jiao: J. Electrochem. Soc., 2018, vol. 165, p. D574.

    Article  CAS  Google Scholar 

  27. J. Huang, K. Du, P. Wang, H. Yin, and D. Wang: Electrochim. Acta, 2021, vol. 378, 138142.

    Article  CAS  Google Scholar 

  28. J. Sure, D.S.M. Vishnu, H.K. Kim, and C. Schwandt: Angew. Chem. Int. Ed., 2020, vol. 132, pp. 11928–33.

    Article  Google Scholar 

  29. J. Sure, D.S.M. Vishnu, and C. Schwandt: Appl. Mater. Today, 2017, vol. 9, pp. 111–21.

    Article  Google Scholar 

  30. B. Wang, J. Huang, J. Fan, Y. Dou, H. Zhu, and D. Wang: J. Electrochem. Soc., 2017, vol. 164, pp. E575-79.

    Article  CAS  Google Scholar 

  31. Y. Kobayashi, D. SuzukibShot, and Y. RyoShoji: Int. J. Hydrogen Energy, 2022, vol. 47, pp. 3722–32.

    Article  CAS  Google Scholar 

  32. J. Sure, D.S.M. Vishnu, and C. Schwandt: Electrochem. Commun., 2022, vol. 143, 107392.

    Article  CAS  Google Scholar 

  33. J. Huang, P. Wang, K. Du, H. Yin, and D. Wang: J. Electrochem. Soc., 2021, vol. 168, 121503.

    Article  CAS  Google Scholar 

  34. J. Sure, D.S.M. Vishnu, and C. Schwandt: JOM, 2020, vol. 72, pp. 3895–05.

    Article  CAS  Google Scholar 

  35. Q. Zhang, S. Zhang, Y. Luo, Q. Liu, J. Luo, P.K. Chu, and X. Liu: APL Mater., 2022, vol. 10, 070701.

    Article  CAS  Google Scholar 

  36. Y. Kobayashi, H.Y. Teah, S. Yokoyama, R. Shoji, and N. Hanada: ACS Sustain. Chem. Eng., 2022, https://doi.org/10.1021/acssuschemeng.2c04007.

    Article  Google Scholar 

  37. Z. Liu, H. Zhang, L. Pei, Y. Shi, Z. Cai, H. Xu, and Y. Zhang: T. Nonferrous Met. Soc., 2018, vol. 28, pp. 376–84.

    Article  CAS  Google Scholar 

  38. W. Xiao, X. Jin, Y. Deng, D. Wang, X. Hu, and G.Z. Chen: ChemPhysChem, 2006, vol. 7, pp. 1750–58.

    Article  CAS  Google Scholar 

  39. W. Xiao, X. Jin, Y. Deng, D. Wang, and G.Z. Chen: J. Electroanal. Chem., 2010, vol. 639, pp. 130–40.

    Article  CAS  Google Scholar 

  40. S.E. Ziemniak, L.M. Anovitz, R.A. Castelli, and W.D. Porter: J. Chem. Thermodyn., 2007, vol. 39, pp. 1474–92.

    Article  CAS  Google Scholar 

  41. X. Cheng, J. Min, Z. Zhu, and W. Ye: Int. J. Miner. Met. Mater., 2012, vol. 19, pp. 173–78.

    Article  CAS  Google Scholar 

  42. Y. Shi, Y.D. Wang, S. Li, R. Li, and Y. Wang: Mater. Sci. Eng. A, 2020, vol. 788, 139600.

    Article  CAS  Google Scholar 

  43. P. Niu, R. Li, K. Gan, T. Yuan, S. Xie, and C. Chen: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 753–66.

    Article  Google Scholar 

  44. M. Ojaghi-Ilkhchi and H. Assadi: Comp. Mater. Sci., 2012, vol. 53, pp. 1–5.

    Article  CAS  Google Scholar 

  45. E.Y. Choi, J.W. Lee, J.J. Park, J.M. Hur, J.K. Kim, K.Y. Jung, and S.M. Jeong: Chem. Eng. J., 2012, vol. 207–208, pp. 514–20.

    Article  Google Scholar 

  46. G. Zhao, Y. Xu, and Y. Cai: Int. J. Electrocem. Sci., 2022, vol. 17, 220245.

    Article  CAS  Google Scholar 

  47. W. Xiao and D. Wang: Chem. Soc. Rev., 2014, vol. 43, pp. 3215–28.

    Article  CAS  Google Scholar 

  48. W. Xiao, J. Zhou, L. Yu, D. Wang, and X.W. Lou: Angew. Chem. Int. Ed., 2016, vol. 128, pp. 7553–57.

    Article  Google Scholar 

  49. Z. Liu, H. Zhang, L. Pei, G. Zhu, H. Xu, and Y. Zhang: J. Electrochem. Soc., 2016, vol. 163, p. H781.

    Article  CAS  Google Scholar 

  50. D. Hu, W. Xiao, and G.Z. Chen: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 272–82.

    Article  Google Scholar 

  51. Z. Pang, X. Zou, K. Zheng, S. Li, S. Wang, H.Y. Hsu, Q. Xu, and X. Lu: ACS Sustain. Chem. Eng., 2018, vol. 6, pp. 16607–15.

    Article  CAS  Google Scholar 

  52. P. Wang, B. Hu, X. Huang, and C. Zheng: Calphad, 2021, vol. 73, 102252.

    Article  CAS  Google Scholar 

  53. S. Yang, M. Jiang, H. Li, Y. Liu, and L. Wang: Rare Met., 2012, vol. 31, pp. 75–80.

    Article  Google Scholar 

  54. X. Zou, X. Lu, Z. Zhou, C. Li, and W. Ding: Electrochim. Acta, 2011, vol. 56, pp. 8430–37.

    Article  CAS  Google Scholar 

  55. R. Xu, Z. Geng, Y. Wu, C. Chen, M. Ni, D. Li, T. Zhang, H. Huang, F. Liu, R. Li, and K. Zhou: Adv. Powder Mater., 2022, vol. 1, 100056.

    Article  Google Scholar 

  56. C. Zhang, M. Zhu, Y. Yuan, S. Guo, and J. Wang: Mater. Corros., 2022, https://doi.org/10.1002/maco.202213108.

    Article  Google Scholar 

  57. I. Moravcik, J. Cizek, Z. Kovacova, J. Nejezchlebova, M. Kitzmantel, E. Neubauer, I. Kubena, V. Hornik, and I. Dlouhy: Mater. Sci. Eng. A, 2017, vol. 701, pp. 370–80.

    Article  CAS  Google Scholar 

  58. W.H. Hall and G.K. Williamson: Proc. Phys. Soc., 1951, vol. 64, p. 946.

    Article  Google Scholar 

  59. N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25–28.

    CAS  Google Scholar 

  60. Y. Gao, Y. Ding, Y. Ma, J. Chen, X. Wang, and J. Xu: Mater. Sci. Eng. A, 2022, vol. 831, 142188.

    Article  CAS  Google Scholar 

  61. D. Lin, L. Xu, H. Jing, Y. Han, L. Zhao, and F. Minamid: Addit. Manuf., 2020, vol. 32, 101058.

    CAS  Google Scholar 

  62. H. Huang, J. Wang, H. Yang, S. Ji, H. Yu, and Z. Liu: Scr. Mater., 2020, vol. 188, pp. 216–21.

    Article  CAS  Google Scholar 

  63. Y. Guo, M. Li, P. Li, C. Chen, Q. Zhan, Y. Chang, and Y. Zhang: J. Alloys Compds., 2020, vol. 820, 153104.

    Article  CAS  Google Scholar 

  64. M. Yao, K.G. Pradeep, C.C. Tasan, and D. Raabe: Scr. Mater., 2014, vol. 72, pp. 5–8.

    Article  Google Scholar 

  65. Z. Wang and I. Baker: Mater. Lett., 2016, vol. 180, pp. 153–56.

    Article  CAS  Google Scholar 

  66. J. Wang, H. Yang, H. Huang, J. Ruan, and S. Ji: Mater. Lett., 2019, vol. 254, pp. 77–80.

    Article  CAS  Google Scholar 

  67. B. Bian, N. Guo, H. Yang, R. Guo, L. Yang, Y. Wu, and J. Qiao: J. Alloys Compds., 2020, vol. 827, 153981.

    Article  CAS  Google Scholar 

  68. C. Hu, J. Zhang, Y. Zhang, K. Han, C. Li, C. Song, and Q. Zhai: J. Iron Steel Res. Int., 2018, vol. 25, pp. 877–82.

    Article  Google Scholar 

  69. I. Moravcik, J. Cizek, J. Zapletal, Z. Kovacova, J. Vesely, P. Minarik, M. Kitzmantel, E. Neubauer, and I. Dlouhy: Mater. Des., 2017, vol. 119, pp. 141–50.

    Article  CAS  Google Scholar 

  70. A. Amar, J. Li, S. Xiang, X. Liu, Y. Zhou, G. Le, X. Wang, F. Qu, S. Ma, and W. Dong: Intermetallics, 2019, vol. 109, pp. 162–66.

    Article  CAS  Google Scholar 

  71. Z. Wu, H. Bei, G.M. Pharr, and E.P. George: Acta Mater., 2014, vol. 81, pp. 428–41.

    Article  CAS  Google Scholar 

  72. F. Weng, Y. Chew, Z. Zhu, X. Yao, L. Wang, F.L. Ng, S. Liu, and G. Bi: Addit. Manuf., 2020, vol. 34, 101202.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 52022054; 51974181; 52004157), the National Key Research and Development Program of China (No. 2022YFC2906100), the China Postdoctoral Science Foundation (No. 2022M712023), the Shanghai Postdoctoral Excellence Program (No. 2021159), the Shanghai Sailing Program (No. 21YF1412900), the Science and Technology Commission of Shanghai Municipality (No. 21DZ1208900). The authors also thank the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (No. TP2019041), and the “Shuguang Program” supported by the Shanghai Education Development Foundation and the Shanghai Municipal Education Commission (No. 21SG42).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangshi Li, Xionggang Lu or Xingli Zou.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, Z., Zhang, X., Hu, C. et al. Electrosynthesis and Evaluation of Homogeneous CoCrNi Medium-Entropy Alloys for Structural Applications. Metall Mater Trans B 54, 2824–2839 (2023). https://doi.org/10.1007/s11663-023-02877-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02877-3

Navigation