Skip to main content
Log in

Preparation of High Nickel Grade Ferronickel From Nickel Sulfide Concentrate with Minimal Sulfur Dioxide Emission

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Nickel is a key element for stainless steel and lithium-ion batteries. However, the conventional extraction of nickel from sulfide ores generates large amounts of sulfur dioxide and slag and demands complex-refining processes to produce marketable products. The authors have proposed a sustainable nickel extraction strategy that retained the bulk of sulfur as solid iron sulfide and extracted nickel value into ferronickel simultaneously. This simple thermal treatment comprised two stages and yielded high nickel grade, high nickel extraction, and large ferronickel grains. The present study demonstrates that these grains of ferronickel can be efficiently separated from the nickel-depleted iron sulfide matrix. The high nickel grade (30 mass pct) and relatively low remaining sulfur concentration (4 mass pct) of the recovered ferronickel concentrate make it a potential feedstock for either stainless steel or nickel-containing cathode material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. National Resources Canada: Nickel facts. https://www.nrcan.gc.ca/our-natural-resources/minerals-mining/minerals-metals-facts/nickel-facts/20519 (accessed 18 July 2022).

  2. Nickel Institute: About nickel. https://nickelinstitute.org/en/about-nickel-and-its-applications/ (accessed 18 July 2022).

  3. P. Yao, X. Zhang, Z. Wang, L. Long, Y. Han, Z. Sun, and J. Wang: Resour. Conserv. Recycl., 2021, vol. 170, pp. 1–7.

    Article  Google Scholar 

  4. C. Tang, B. Sprecher, A. Tukker, and J.M. Mogollón: Resour. Policy, 2021, vol. 74, pp. 1–7.

    Google Scholar 

  5. Bloomberg news: Tesla in talks with BHP over nickel supply pact. https://www.mining.com/web/tesla-in-talks-with-bhp-over-nickel-supply-pact/ (accessed 18 July 2022).

  6. Mining.com Editor: Nickel demand for EVs to outpace lithium and cobalt – report. https://www.mining.com/nickel-demand-for-evs-to-outpace-lithium-and-cobalt-report/ (accessed 18 July 2022).

  7. J. Fraser, J. Anderson, J. Lazuen, Y. Lu, O. Heathman, N. Brewster, J. Bedder, O. Masson, Roskill Information Services London, and Europäische Kommission Gemeinsame Forschungsstelle: Study on Future Demand and Supply Security of Nickel for Electric Vehicle Batteries, Luxembourg, 2021.

  8. R. Backhaus: ATZ Worldw., 2021, vol. 123, pp. 8–13.

    Google Scholar 

  9. Tesla: Tesla Battery Day Presentation. https://tesla-share.thron.com/content/?id=96ea71cf-8fda-4648-a62c-753af436c3b6&pkey=S1dbei4 (accessed 18 July 2022).

  10. G.E. Blomgren: J. Electrochem. Soc., 2017, vol. 164, pp. A5019-5025.

    Article  CAS  Google Scholar 

  11. M.V. Reddy, A. Mauger, C.M. Julien, A. Paolella, and K. Zaghib: Materials (Basel), 2020, vol. 13, pp. 1–9.

    Article  Google Scholar 

  12. A. Yoshino: Lithium-Ion Batter. Adv. Appl., 2014, pp. 1–20.

  13. Y.K. Sun, D.J. Lee, Y.J. Lee, Z. Chen, and S.T. Myung: ACS Appl. Mater. Interfaces, 2013, vol. 5, pp. 11434–1440.

    Article  CAS  Google Scholar 

  14. H. Li, M. Cormier, N. Zhang, J. Inglis, J. Li, and J.R. Dahn: J. Electrochem. Soc., 2019, vol. 166, pp. A429-439.

    Article  CAS  Google Scholar 

  15. Y. Kim, W.M. Seong, and A. Manthiram: Energy Storage Mater., 2021, vol. 34, pp. 250–59.

    Article  Google Scholar 

  16. J. Liu, J. Wang, Y. Ni, K. Zhang, F. Cheng, and J. Chen: Mater. Today, 2021, vol. 43, pp. 132–65.

    Article  CAS  Google Scholar 

  17. H.H. Ryu, H.H. Sun, S.T. Myung, C.S. Yoon, and Y.K. Sun: Energy Environ. Sci., 2021, vol. 14, pp. 844–52.

    Article  CAS  Google Scholar 

  18. USGS: Nickel, 2022. https://pubs.usgs.gov/periodicals/mcs2022/mcs2022-nickel.pdf (acessed 18 July 2022).

  19. A. Vahed, P.J. Mackey, and A.E.M. Warner: in Ni-Co 2021: The 5th International Symposium on Nickel and Cobalt, C. Anderson, G. Gooddall, S. Gostu, D. Gregurek, and M. Lundström, eds., Springer, Berlin, 2021, pp. 3–39.

  20. F. Wang, S. Marcuson, L.T. Khajavi, and M. Barati: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 2642–652.

    Article  Google Scholar 

  21. F. Wang, S. Marcuson, L.T. Khajavi, and M. Barati: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2021, vol. 52, pp. 3120–129.

    Article  CAS  Google Scholar 

  22. F. Wang, F. Liu, R. Elliott, S. Rezaei, L.T. Khajavi, and M. Barati: J. Alloys Compd., 2020, vol. 822, 153582.

    Article  CAS  Google Scholar 

  23. F. Wang, S. Marcuson, L.T. Khajavi, and M. Barati: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 3920–929.

    Article  CAS  Google Scholar 

  24. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I. Jung, Y. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M. Van Ende: Calphad Comput. Coupling Phase Diagrams Thermochem., 2016, vol. 54, pp. 35–53.

    Article  CAS  Google Scholar 

  25. R.H. Condit, R.R. Hobbins, and C.E. Birchenall: Oxid. Met., 1974, vol. 8, pp. 409–55.

    Article  CAS  Google Scholar 

  26. K. Hirano, M. Cohen, and B.L. Averbach: Acta Metall., 1961, vol. 9, pp. 440–45.

    Article  CAS  Google Scholar 

  27. D.S. Lauretta: Oxid. Met., 2005, vol. 64, pp. 1–22.

    Article  CAS  Google Scholar 

  28. T. Ustad and H. Sørum: Phys. Status Solidi, 1973, vol. 20, pp. 285–94.

    Article  CAS  Google Scholar 

  29. O. Polyakov: in Handbook of Ferroalloys Theory and Technology, M. Gasik, ed., Twelfth Ed., Elsevier, 2013, pp. 367–75.

  30. F.K. Crundwell, M.S. Moats, V. Ramachandran, T.G. Robinson, and W.G. Davenport: Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals, Elsevier, Amsterdam, 2011, pp. 85–93.

    Book  Google Scholar 

  31. F. Hernández and M. Nejarda: in The thirteenth International Ferroalloys Congress - Efficient technologies in ferroalloy industry, Almaty, 2013, pp. 245–54.

  32. X. Men: University of Toronto, 2012.

  33. Li, W., Wen, D., Fu, H. (2019). Chinese Patent No. CN106829907B. China National Intellectual Property Administration, Beijing.

  34. He, F., Deng, H., Qiao, Y., Chen, R., Ruan, D., Shen, Z., Li, C. (2022). Chinese Patent No. CN112941314B. China National Intellectual Property Administration, Beijing.

  35. A. Taylor: Short Course Treatment of Nickel-Cobalt Laterites, ALTA, 2022.

  36. W. Xiao, X. Chen, X. Liu, Z. Zhao, and Y. Li: Sep. Purif. Technol., 2021, vol. 270, 118789.

    Article  CAS  Google Scholar 

  37. S.W. Andayani, A.M. Qizwini, H.S. Wibowo, and M. Arsyansyah: IOP Conf. Ser. Mater. Sci. Eng., 2020, https://doi.org/10.1088/1757-899X/893/1/012003.

    Article  Google Scholar 

  38. S. Khan: Norwegian University of Science and technology, 2021.

Download references

Acknowledgments

The authors wish to acknowledge the financial support from the Connaught Innovation Fund at the University of Toronto and the Natural Science and Engineering Research Council of Canada (NSERC I2IPJ 566697) and technical support from Vale Canada. Sincere thanks to Dr. Abdolkarim Danaei for his help with the experiments.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanmao Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Marcuson, S., Xu, M. et al. Preparation of High Nickel Grade Ferronickel From Nickel Sulfide Concentrate with Minimal Sulfur Dioxide Emission. Metall Mater Trans B 54, 2758–2770 (2023). https://doi.org/10.1007/s11663-023-02872-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02872-8

Navigation