Skip to main content

Advertisement

Log in

Green Recovery of Ti, W, and V From Spent V2O5-WO3/TiO2 Catalyst to Prepare W- and V-Containing Si-Ti Alloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Spent V2O5-WO3/TiO2 catalyst (SVWTC) is considered hazardous waste and a valuable resource of Ti, W, and V. Herein, Ti, W, and V were recovered from waste via silicothermic reduction to prepare W- and V-containing Si-Ti alloys with potential applications. An optimal reduction slag system (CaO-SiO2-TiO2-20 wt pct MgO) and reduction temperature (1773K) were determined to ensure completion of the Si reduction of spent V2O5-WO3/TiO2. The effects of the reduction time (holding time) and basicity (CaO/SiO2 mass ratio) of the initial slag on the separation of the alloy and reduction of Ti, W, and V oxides were investigated. Extending the holding time and basicity of the initial slag improved the separation of the alloy from the residual slag and increased the extraction ratios of Ti, W, and V. The equilibrium time was determined as 6 hours, and the maximum extraction ratios of Ti, W, and V were 96.9, 95.5, and 93.6 pct, respectively. The corrosion of the refractory material during Si reduction was investigated and was controlled at 2.65 pct with high recovery of the oxides. No waste liquid was discharged, and the residual slag could be recycled. This study introduces a green and efficient method for recycling Ti, W, and V from SVWTC and provides a new method for preparing W- and V-containing Si-Ti alloys.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H.J. Yuan: Resour. Conserv. Recy., 2018, vol. 129, pp. 290–92.

    Article  Google Scholar 

  2. M.A. Dmitrienko, G.S. Nyashina, and P.A. Strizhak: J. Clean. Prod., 2018, vol. 177, pp. 284–301.

    Article  CAS  Google Scholar 

  3. L. Chen, H.J. Li, and H.M. Ge: J. Phys. Chem. C, 2009, vol. 113(50), pp. 21177–84.

    Article  CAS  Google Scholar 

  4. S.X. Li, D.C. Liu, X. Li, Y. Peng, and H.J. Li: Catal. Commun, 2017, vol. 100, pp. 112–16.

    Article  CAS  Google Scholar 

  5. A. Marberger, M. Elsener, D. Ferri, and O. Kröcher: Catalysts, 2015, vol. 5(4), pp. 1704–20.

    Article  CAS  Google Scholar 

  6. L.J. Alemany, F. Berti, G. Busca, G. Ramis, D. Robba, G.P. Toledo, and M. Trombetta: Appl. Catal. B, 1996, vol. 10(4), pp. 299–311.

    Article  CAS  Google Scholar 

  7. B.M. Reddy, I. Ganesh, and E.P. Reddy: J. Phys. Chem. B, 1997, vol. 101(10), pp. 1769-1774.

  8. S. Cimino, L. Lisi, and M. Tortorelli: Chem. Eng. J., 2016, vol. 283, pp. 223–30.

    Article  CAS  Google Scholar 

  9. C.P. Cho, Y.D. Pyo, J.Y. Jang, G.C. Kim, and Y.J. Shin: Appl. Therm. Eng., 2017, vol. 110, pp. 18–24.

    Article  CAS  Google Scholar 

  10. X. Li, J. Li, Y. Peng, H. Chang, T. Zhang, S. Zhao, W. Si, and J. Hao: Appl. Catal. B, 2016, vol. 184, pp. 246–57. https://doi.org/10.1016/j.apcatb.2015.11.042.

    Article  CAS  Google Scholar 

  11. J. Yang, Q. Yang, J. Sun, Q. Liu, D. Zhao, W. Gao, and L. Liu: Catal. Commun., 2015, vol. 59, pp. 78–82.

    Article  CAS  Google Scholar 

  12. C.U.I. Odenbrand: Appl. Catal. B, 2018, vol. 234, pp. 365–77.

    Article  CAS  Google Scholar 

  13. M.L. Cao, Q. Wang, W. Zhang, F.Z. Qiu, and J. Yang: J. Equip. Environ. Eng., 2018, vol. 2, pp. 55–61 (in Chinese).

    Google Scholar 

  14. C.P. Qi, W.J. Bao, L.G. Wang, H.Q. Li, and W.F. Wu: Catalysts, 2017, vol. 7(4), art. no. 110. https://doi.org/10.3390/catal7040110.

    Article  CAS  Google Scholar 

  15. G. Moon, J.H. Kim, Y.C. Cho, I.H. Choi, H.N. Kang, T.H. Lee, J.Y. Lee, and J. Kang: Rare Met. Technol., 2019, vol. 2019, pp. 119–29.

    Google Scholar 

  16. Y. Cao, J. Yuan, H. Du, D. Dreisinger, and M. Li: Miner. Eng., 2021, vol. 165, p. 106857.

    Article  CAS  Google Scholar 

  17. Q.C. Li, Z.Y. Liu, and Q.Y. Liu: Ind. Eng. Chem. Res., 2014, vol. 53(8), pp. 2956–62.

    Article  CAS  Google Scholar 

  18. W. Wu, C. Wang, W. Bao, and H. Li: Hydrometallurgy, 2018, vol. 179, pp. 52–59.

    Article  CAS  Google Scholar 

  19. Q. Su, J. Miao, H. Li, Y. Chen, J. Chen, and J. Wang: Hydrometallurgy, 2018, vol. 181, pp. 230–39.

    Article  CAS  Google Scholar 

  20. J.W. Kim, W.G. Lee, I.S. Hwang, J.Y. Lee, and C. Han: J. Ind. Eng. Chem., 2015, vol. 28, pp. 73–77.

    Article  CAS  Google Scholar 

  21. G. Moon, J.H. Kim, J.Y. Lee, and J. Kang: Hydrometallurgy, 2019, vol. 189, p. 105132.

    Article  CAS  Google Scholar 

  22. Q.J. Zhang, Y.F. Wu, and T.Y. Zuo: ACS Sustain. Chem. Eng., 2018, vol. 6(3), pp. 3091–3101.

    Article  CAS  Google Scholar 

  23. Z.C. Li, Y. Lei, W.H. Ma, Y.K. Zhang, S.D. Wang, Y.S. Ren, and G.Q. Lv: Green Chem., 2022, vol. 24(8), pp. 3344–57.

    Article  CAS  Google Scholar 

  24. W.X. Wang, Z.L. Xue, S.Q. Song, P. Li, and Z.C. Chen: ADV Mater. Res., 2012, vol. 476, pp. 164–69.

    Google Scholar 

  25. Y.V. Bendre, V.F. Goryushkin, R.E. Kryukov, N.A. Kozyrev, and L.P. Bashchenko: Steel Transl., 2018, vol. 48, pp. 163–67.

    Article  Google Scholar 

  26. Z.C. Li, Y. Lei, W.H. Ma, Y.K. Zhang, and C. Wang: Sep. Purif. Technol., 2021, vol. 265, p. 118473.

    Article  CAS  Google Scholar 

  27. B. Xiang, Q.X. Wang, Z. Wang, X.Z. Zhang, L.Q. Liu, J. Xu, and D.P. Yu: Appl. Phys. Lett., 2005, vol. 86(24), p. 243103.

    Article  Google Scholar 

  28. Y.C. Zhang, M.Y. Chen, Z.Y. Chen, Y. Wang, S. Li, P.X. Duan, Y.J. Zhong, Z.G. Wu, X.D. Guo, Z.J. Yan, and X.L. Wang: J. Alloy Compd., 2021, vol. 876, p. 160125.

    Article  CAS  Google Scholar 

  29. H.Y. Wang, W.P. Si, S. Li, N. Zhang, and Q.C. Jiang: J. Mater. Res., 2010, vol. 25(12), pp. 2317–24.

    Article  CAS  Google Scholar 

  30. H.Y. Yang, P.J. Ji, C.H. Zhan, Y.X. Jin, and S.L. Shu: Int. J. Mod. Phys. B, 2019, vol. 33, p. 1940051.

    Article  CAS  Google Scholar 

  31. G.X. Qiu, D.J. Miao, X.L. Wei, C. Bai, and X.M. Li: J. Non-Cryst. Solids, 2022, vol. 585, p. 121545.

    Article  CAS  Google Scholar 

  32. H. Xu, H. Wang, D. Tang, and Y. Li: Mod. Mach., 2011, vol. 4, pp. 67–69 (in Chinese).

    Google Scholar 

  33. Y.K. Zhang, L.E. Sun, Y. Lei, W.H. Ma, and Z.C. Li: Ceram. Int., 2021, vol. 47(13), pp. 18044–18052.

    Article  CAS  Google Scholar 

  34. I.B. Rumpf: Vet. Immunol. Immunop., 1997, vol. 4(55), pp. 359–60.

    Article  Google Scholar 

  35. Z.Y. Chen, Y.Q. Li, Y. Tan, and K. Morita: Mater. Trans., 2015, vol. 56, pp. 1919–22.

    Article  CAS  Google Scholar 

  36. S.H. Tabaian, M. Maeda, T. Ikeda, and Y. Ogasawara: High Temp. Mater. PR-ISR, 2000, vol. 19(3–4), pp. 257–64.

    Article  CAS  Google Scholar 

  37. H.Z. Gu, J. Cao, J.J. Wu, M. Xu, and W.H. Ma: J. Clean Prod., 2022, vol. 359, p. 132080.

    Article  CAS  Google Scholar 

  38. I.H. Jung, S.A. Decterov, and A.D. Pelton: J. Eur. Ceram. Soc., 2005, vol. 25(4), pp. 313–33. https://doi.org/10.1016/j.jeurceramsoc.2004.02.012.

    Article  CAS  Google Scholar 

  39. H. Okamoto, M.E. Schlesinger, and E.M. Mueller: Alloy Phase Diagrams, ASM Handbook, vol. 3, ASM International, 2016, p. 89. https://doi.org/10.31399/asm.hb.v03.a0006247.

  40. C. Vahlas, P.Y. Chevalier, and E. Blanquet: Calphad, 1989, vol. 13(3), pp. 273–92.

    Article  CAS  Google Scholar 

  41. Q. Zeng, J.L. Li, Y. Yu, and H.Y. Zhu: High Temp Mater., 2020, vol. 39(1), pp. 74–80.

    Article  CAS  Google Scholar 

  42. S. Lyu, X.D. Ma, M. Chen, Z.Z. Huang, Z. Yao, G. Wang, and B.J. Zhao: Calphad, 2020, vol. 68, 101721.

    Article  CAS  Google Scholar 

  43. Q.J. Zhang, Y.F. Wu, L.L. Li, and T.Y. Zuo: ACS Sustain Chem. Eng., 2018, vol. 6(9), pp. 12502–10.

    Article  CAS  Google Scholar 

  44. I.H. Choi, G. Moon, J.Y. Lee, and R.K. Jyothi: J. Clean. Prod., 2018, vol. 197, pp. 163–69.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China (No. 2019YFC1907500) and the Yunnan Major Scientific and Technological Projects (No. 202202AG050007).

Author contributions

ZL: writing—original draft, data curation, investigation, validation. YL: supervision, project administration, resources, writing—review and editing, conceptualization. WM: supervision, resources. YZ: investigation, validation. SW: investigation, validation.

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Lei or Wenhui Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Lei, Y., Ma, W. et al. Green Recovery of Ti, W, and V From Spent V2O5-WO3/TiO2 Catalyst to Prepare W- and V-Containing Si-Ti Alloy. Metall Mater Trans B 54, 2614–2628 (2023). https://doi.org/10.1007/s11663-023-02862-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02862-w

Navigation