Skip to main content
Log in

Catalytic Effect of Iron Oxide on the Combustion of Carbonaceous Materials in Mold Flux for Continuous Casting

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The reverse gradient distributions of temperature and oxygen concentration in the three-layers structure of mold flux at the upper part of the continuous casting mold are easy to cause the insufficient burning of carbonaceous materials of mold flux, resulting in the generation of carbon-rich layer and too slow melting of mold flux. Through a melting behavior experiment, the addition of a small amount of iron oxide into mold flux was found to promote the melting of mold flux significantly. The calculations of the comprehensive combustion index and combustion kinetic based on thermogravimetric experiments proved that iron oxide facilitated the burning of carbonaceous materials and the melting of mold flux by decreasing the activation energy of the combustion reaction. The catalytic effect of iron oxide on the combustion of carbonaceous materials of mold flux in the high-temperature and oxygen-poor zone of the slag layer was realized through the oxidation–reduction cycle reactions of iron oxides with different valence states. The above findings provide a brand new approach to solve the carbon-rich predicament of mold flux caused by the incomplete burning of carbonaceous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Gu, G. Wen, J. Guo, Z. Wang, P. Tang, and Q. Liu: ISIJ Int., 2020, vol. 60, pp. 1179–87.

    Article  CAS  Google Scholar 

  2. S. Gu, L. Yu, G. Wen, P. Tang, Z. Wang, and W. Jiang: Steel Res Int., 2021, vol. 92, p. 2000416.

    Article  CAS  Google Scholar 

  3. F. Han, G. Wen, F. Zhang, Z. Wang, and L. Yu: Steel Res Int., 2022, vol. 5, p. 2200480.

    Google Scholar 

  4. F. Han, L. Yu, G. Wen, Y. Lu, L. Zhang, and S. Gu: ISIJ Int., 2022, vol. 62, pp. 1657–65.

    Article  CAS  Google Scholar 

  5. F. Chen, G. Wen, P. Tang, L. Yu, and F. Han: J. Therm. Anal. Calorim., 2022, vol. 147, pp. 10965–75.

    Article  CAS  Google Scholar 

  6. M. Supradist, A.W. Cramb, and K. Schwerdtfeger: ISIJ Int., 2004, vol. 44, pp. 817–26.

    Article  CAS  Google Scholar 

  7. L. Yu, W. Jiang, S. Gu, P. Tang, Z. Wang, and G. Wen: Ironmak. Steelmak., 2021, vol. 49, pp. 199–207.

    Article  Google Scholar 

  8. V. Skoulou and A. Zabaniotou: Catal. Today, 2012, vol. 196, pp. 56–66.

    Article  CAS  Google Scholar 

  9. A. Khelfa, V. Sharypov, G. Finqueneisel, and J.V. Weber: J. Anal. Appl. Pyrol., 2009, vol. 84, pp. 84–88.

    Article  CAS  Google Scholar 

  10. Z. Gong, W. Wenfei, Z. Zhao, and B. Li: Catal. Today, 2018, vol. 318, pp. 59–65.

    Article  CAS  Google Scholar 

  11. G. Pecchi, P. Reyes, and R. Zamora: React. Kinet. Catal. Lett., 2003, vol. 80, pp. 375–81.

    Article  CAS  Google Scholar 

  12. A. Setiawan, E.M. Kennedy, B.Z. Dlugogorski, A.A. Adesina, and M. Stockenhuber: Catal. Today, 2015, vol. 258, pp. 276–83.

    Article  CAS  Google Scholar 

  13. C. Zou and J. Zhao: J. Energy Inst., 2017, vol. 90, pp. 797–805.

    Article  CAS  Google Scholar 

  14. C. Zou, L. Wen, S. Zhang, C. Bai, and G. Yin: Fuel Process. Technol., 2014, vol. 119, pp. 136–45.

    Article  CAS  Google Scholar 

  15. Y. Song, J. Hu, J. Liu, F. Evrendilek, and M. Buyukada: J. Clean. Prod., 2020, vol. 252, 119646.

    Article  CAS  Google Scholar 

  16. J. Hu, Y. Yan, Y. Song, J. Liu, F. Evrendilek, and M. Buyukada: J. Clean. Prod., 2020, vol. 270, 122418.

    Article  CAS  Google Scholar 

  17. X. Gong, Z. Guo, and Z. Wang: Energy, 2010, vol. 35, pp. 506–11.

    Article  CAS  Google Scholar 

  18. S. Wagloehner and S. Kureti: Appl. Catal. B, 2012, vol. 125, pp. 158–65.

    Article  CAS  Google Scholar 

  19. T. Suzuki, K. Inoue, and Y. Watanabe: Energy Fuels, 1988, vol. 2, pp. 673–79.

    Article  CAS  Google Scholar 

  20. R. Zhao, J. Qin, T. Chen, L. Wang, and J. Wu: Waste Manage., 2020, vol. 116, pp. 91–99.

    Article  CAS  Google Scholar 

  21. M.A. Islam, M. Auta, G. Kabir, and B.H. Hameed: Bioresource Technol., 2016, vol. 200, pp. 335–41.

    Article  CAS  Google Scholar 

  22. Z.B. Laougé and H. Merdun: Bioresource Technol., 2020, vol. 299, p. 122602.

    Article  Google Scholar 

  23. K. Higuchi, K. Kunitomo, and S. Nomura: ISIJ Int., 2020, vol. 60, pp. 2366–75.

    Article  CAS  Google Scholar 

  24. Y. Ohtsuka, Y. Kuroda, Y. Tamai, and A. Tomita: Fuel, 1986, vol. 65, pp. 1476–78.

    Article  CAS  Google Scholar 

  25. M. Kawanari, A. Matsumoto, R. Ashida, and K. Miura: ISIJ Int., 2011, vol. 51, pp. 1227–33.

    Article  CAS  Google Scholar 

  26. K. Saito, K. Okuda, N.-O. Ikenaga, T. Miyake, and T. Suzuki: J. Phys. Chem. A, 2010, vol. 114, pp. 3845–54.

    Article  CAS  Google Scholar 

  27. S. Minicò, S. Scirè, C. Crisafulli, R. Maggiore, and S. Galvagno: Appl. Catal. B, 2000, vol. 28, pp. 245–51.

    Article  Google Scholar 

  28. E. de Smit and B.M. Weckhuysen: Chem. Soc. Rev., 2008, vol. 37, pp. 2758–81.

    Article  Google Scholar 

  29. S. Sushil and V.S. Batra: Appl. Catal. B, 2008, vol. 81, pp. 64–77.

    Article  CAS  Google Scholar 

  30. Z. Ma, R. Xiao, and L. Chen: Energy Convers. Manage., 2018, vol. 168, pp. 288–95.

    Article  CAS  Google Scholar 

  31. N.L. Galinsky, A. Shafiefarhood, Y. Chen, L. Neal, and F. Li: Appl. Catal. B, 2015, vol. 164, pp. 371–79.

    Article  CAS  Google Scholar 

  32. Z. Ma, R. Xiao, and L. Chen: Fuel Process. Technol., 2017, vol. 168, pp. 20–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 52274319).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghua Wen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, F., Wen, G., Tang, P. et al. Catalytic Effect of Iron Oxide on the Combustion of Carbonaceous Materials in Mold Flux for Continuous Casting. Metall Mater Trans B 54, 2605–2613 (2023). https://doi.org/10.1007/s11663-023-02861-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02861-x

Navigation