Skip to main content

Advertisement

Log in

Study on Selective Leaching of Copper and Simultaneous Precipitation of Iron in Polymetallic Complex Chalcopyrite by Hydrothermal Leaching Under Oxygen Pressure

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Due to the increasing complexity and dilution of copper resources, a large number of refractory polymetallic complex chalcopyrite are produced. In this study for resolving puzzle in oxygen pressure acid leaching of polymetallic complex chalcopyrite, such as prone to produce dangerous solid wastes like lead jarosite and high iron content in leaching solution, the technology of hydrothermal leaching under oxygen pressure without acid is proposed to extract copper efficiently and selectively and to precipitate iron by hematite process simultaneously. The results show that under the experimental conditions of initial sulfuric acid concentration of 0 g/L, reaction temperature of 200 °C, oxygen partial pressure of 1.2 MPa, liquid–solid ratio of 10 mL/g, sodium lignosulfonate addition of 0.5 pct mass of raw material, leaching time of 120 minutes, and stirring speed of 400 r/min, copper leaching rate can reach 99.86 pct. At this time, the iron content of leaching solution is only 4.3 g/L; Chalcopyrite (CuFeS2), porphyrite (Cu5FeS4), pyrite (FeS2), galena (PbS), and other mineral phases can completely react in the system to form corresponding metal sulfate, and Fe3+ is converted to hematite by directed hydrolysis, thus inhibiting the generation of dangerous solid waste such as lead jarosite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. B.W. Schipper, H.C. Lin, M.A. Meloni, K. Wansleebon, R. Heijunga, and E. Voet: Resour. Conserv. Recycl., 2018, vol. 132, pp. 28–36. https://doi.org/10.1016/j.resconrec.2018.01.004.

    Article  Google Scholar 

  2. A. Elshkaki, T.E. Graedel, L. Ciacci, and B. Reck: Glob. Environ. Chang., 2016, vol. 39, pp. 305–15. https://doi.org/10.1016/j.gloenvcha.2016.06.006.

    Article  Google Scholar 

  3. S. Raghavan: Int. J. Miner. Process., 1979, vol. 6(2), pp. 170–71. https://doi.org/10.1016/0301-7516(79)90026-7.

    Article  Google Scholar 

  4. E.M. Córdoba, J.A. Muñoz, M.L. Blázquez, F. González, and A. Ballester: Hydrometallurgy, 2009, vol. 93(3–4), pp. 81–87. https://doi.org/10.1016/j.hydromet.2008.04.015.

    Article  CAS  Google Scholar 

  5. H.R. Watling: Hydrometallurgy, 2013, vol. 140, pp. 163–80. https://doi.org/10.1016/j.hydromet.2013.09.013.

    Article  CAS  Google Scholar 

  6. J. Zhou, Y.L. Liao, B.J. Li, and F.R. Huang: Chem. Ind. Eng. Prog., 2015, vol. 34(01), pp. 252–57. https://doi.org/10.16085/j.issn.1000-6613.2015.01.045.

    Article  CAS  Google Scholar 

  7. Q. Liu and Y.H. Zhang: Miner. Eng., 2000, vol. 13(13), pp. 1405–416. https://doi.org/10.1016/S0892-6875(00)00122-9.

    Article  CAS  Google Scholar 

  8. F. Nakhaei and M. Irannajad: Miner. Process. Extr. Metall. Rev., 2018, vol. 39(2), pp. 89–124. https://doi.org/10.1080/08827508.2017.1391245.

    Article  CAS  Google Scholar 

  9. P. Huang, L. Wang, and Q. Liu: Int. J. Miner. Process., 2014, vol. 128, pp. 6–15. https://doi.org/10.1016/j.minpro.2014.02.004.

    Article  CAS  Google Scholar 

  10. W.Q. Qin, Q. Wei, F. Jiao, N. Li, P.P. Wang, and L.F. Ke: Int. J. Min. Sci. Technol, 2012, vol. 22(3), pp. 345–49. https://doi.org/10.1016/j.ijmst.2012.04.011.

    Article  CAS  Google Scholar 

  11. J. Esmaeil and G. Ahmad: Hydrometallurgy, 2017, vol. 171, pp. 333–43. https://doi.org/10.1016/j.hydromet.2017.06.011.

    Article  CAS  Google Scholar 

  12. A.G.R. Toledo, S.P. Tayar, F.A. Arena, A.V. Benedetti, and D. Bevilaqua: Miner. Eng., 2022, vol. 180, p. 107467. https://doi.org/10.1016/j.mineng.2022.107467.

    Article  CAS  Google Scholar 

  13. B.V. Ali, N. Sabereh, and D. Esmaeel: Miner. Eng., 2022, vol. 175, p. 107281. https://doi.org/10.1016/j.mineng.2021.107281.

    Article  CAS  Google Scholar 

  14. P. Sandeep, A. Ata, P. Nilotpala, and D. Haci: Bioresour. Technol., 2015, vol. 196, pp. 694–706. https://doi.org/10.1016/j.biortech.2015.08.064.

    Article  CAS  Google Scholar 

  15. C.L. Brierley: Hydrometallurgy, 2010, vol. 104(3–4), pp. 324–28. https://doi.org/10.1016/j.hydromet.2010.03.021.

    Article  CAS  Google Scholar 

  16. E.M. Cordoba, J.A. Munoz, M.L. Blazquez, F. Gonzalez, and F. Ballester: Miner. Eng., 2009, vol. 22, pp. 229–35. https://doi.org/10.1016/j.mineng.2008.07.004.

    Article  CAS  Google Scholar 

  17. R.P. Hackl, D.B. Dreisinger, E. Peters, and J.A. King: Hydrometallurgy, 1995, vol. 39, pp. 25–48. https://doi.org/10.1016/0304-386X(95)00023-A.

    Article  CAS  Google Scholar 

  18. Y.J. Xian, S.M. Wen, J.S. Deng, Q. Liu, and J. Nie: Can. Metall. Q., 2013, vol. 51, pp. 133–40. https://doi.org/10.1179/1879139512Y.0000000001.

    Article  CAS  Google Scholar 

  19. T.S. Qiu, G.H. Nie, J.F. Wang, and L.F. Cui: Trans. Nonferrous Met. Soc. China, 2007, vol. 17, pp. 418–22. https://doi.org/10.1016/S1003-6326(07)60108-3.

    Article  CAS  Google Scholar 

  20. J.J. Wu, J. Ahn, and J. Lee: Miner. Process. Extr. Metall. Rev., 2020, vol. 2, pp. 1–8. https://doi.org/10.1080/08827508.2020.1795850.

    Article  CAS  Google Scholar 

  21. W.U. Sf, C.R. Yang, W.Q. Qin, F. Jiao, J. Wang, and Y.S. Zhang: Trans. Nonferrous Met. Soc. China, 2015, vol. 25, pp. 4110–18. https://doi.org/10.1016/S1003-6326(15)64062-6.

    Article  CAS  Google Scholar 

  22. M.B. Syott, H.R. Watling, P.D. Franzmann, and D. Sutton: Miner. Eng., 2000, vol. 13, pp. 1117–27. https://doi.org/10.1016/S0892-6875(00)00095-9.

    Article  Google Scholar 

  23. J. Chaidez, J. Parga, J. Valenzuela, R. Carrillo, and I. Almaguer: Metal, 2019, vol. 9(2), p. 189. https://doi.org/10.3390/met9020189.

    Article  CAS  Google Scholar 

  24. A.A. Baba, M.K. Ghosh, S.R. Pradhan, D.S. Rao, A. Baral, and F.A. Adekola: Trans. Nonferrous Met. Soc. China, 2014, vol. 24, pp. 1587–95. https://doi.org/10.1016/S1003-6326(14)63229-5.

    Article  CAS  Google Scholar 

  25. R.G. Mcdonald and D.M. Muir: Hydrometallurgy, 2007, vol. 86, pp. 191–205. https://doi.org/10.1016/j.hydromet.2006.11.015.

    Article  CAS  Google Scholar 

  26. L.L. Godirilwe, R.S. Magwaneng, S. Riku, H. Kazutoshi, B. Altansukh, A. Shogo, K. Takashi, M. Hidekazu, M. Kohei, K. Masanobu, and S. Atsushi: Miner. Eng., 2021, vol. 173, p. 107181. https://doi.org/10.1016/j.mineng.2021.107181.

    Article  CAS  Google Scholar 

  27. Y.Y. Wang, H.F. Yang, G. Zhang, J.X. Kang, and C.L. Wang: Chem. Eng. J. Adv., 2020, vol. 3, pp. 100023–24. https://doi.org/10.1016/j.ceja.2020.100023.

    Article  CAS  Google Scholar 

  28. J.G. Ryu: J. Hazard. Mater., 2022, vol. 427, pp. 128283–85. https://doi.org/10.1016/j.jhazmat.2022.128283.

    Article  CAS  Google Scholar 

  29. Y.L. Bai, W. Wang, F. Xie, D.K. Lu, and K.X. Jiang: Trans. Nonferrous Met. Soc. China, 2022, vol. 32, pp. 1650–63. https://doi.org/10.1016/S1003-6326(22)65900-4.

    Article  CAS  Google Scholar 

  30. G.X. Ji, Y.L. Liao, Y. Wu, J.J. Xi, and Q.F. Liu: J. Sustain. Metall., 2022, vol. 8, pp. 964–77. https://doi.org/10.1007/s40831-022-00561-5.

    Article  Google Scholar 

  31. G. Owusu, D.B. Dreisinger, and E. Peters: Hydrometallurgy, 1995, vol. 38(3), pp. 315–24.

    Article  CAS  Google Scholar 

  32. B. Han, B. Altansukh, K. Haga, and Y. Takasaki: J. Sustain. Metall., 2017, vol. 3, pp. 528–42. https://doi.org/10.1007/s40831-017-0135-3.

    Article  Google Scholar 

  33. M. Chu, C.X. Li, P. Zhang, W.B. Ji, C. Wei, Z.G. Deng, X.B. Li, G. Fan, and M.T. Li: Chin. J. Nonferrous Met., 2020, vol. 30(5), pp. 1119–30. https://doi.org/10.11817/j.ysxb.1004.0609.2020-35783.

    Article  Google Scholar 

  34. C.X. Li, C. Wei, S.W. Yi, G. Fan, Z.G. Deng, X.B. Li, and M.T. Li: Hydrometallurgy, 2019, vol. 189, p. 105112. https://doi.org/10.1016/j.hydromet.2019.105112.

    Article  CAS  Google Scholar 

  35. K.Q. Xie, X.W. Yang, J.K. Wang, J.F. Yan, and Q.F. Sheng: Trans Nonferrous Met Soc China, 2007, vol. 17(1), pp. 187–94. https://doi.org/10.1016/S1003-6326(07)60070-336.

    Article  CAS  Google Scholar 

  36. M.C. Ruiz, J. Zapata, and R. Padilla: Hydrometallurgy, 2008, vol. 89(1–2), pp. 32–39. https://doi.org/10.1016/j.hydromet.2007.05.00337.

    Article  Google Scholar 

  37. Z.G. Deng, F. Yang, C. Wei, B.P. Zhu, P. Zeng, X.B. Li, C.X. Li, and M.T. Li: Trans Nonferrous Met Soc China, 2020, vol. 30, pp. 492–500. https://doi.org/10.1016/S1003-6326(20)65229-3.

    Article  CAS  Google Scholar 

  38. C.X. Li, C. Wei, Z.G. Deng, X.B. Li, G. Fan, Y.Z. Wang, S.W. Yi, and M.T. Li: Chin. J. Nonferrous Met., 2018, vol. 28(3), pp. 628–36. https://doi.org/10.19476/j.ysxb.1004.0609.2018.03.23.

    Article  Google Scholar 

  39. F. Kastury, W. Tang, C. Herde, M.R. Noerpel, K.G. Scheckel, and A.L. Juhasz: J. Hazard. Mater., 2021, vol. 418, p. 126312. https://doi.org/10.1016/j.jhazmat.2021.126312.

    Article  CAS  Google Scholar 

  40. Z. Niu, G. Li, D. He, X. Fu, W. Sun, and T. Yue: J. Hazard. Mater., 2021, vol. 416, p. 125972. https://doi.org/10.1016/j.jhazmat.2021.125972.

    Article  CAS  Google Scholar 

  41. R.L. Frost, R.A. Wills, M.L. Weier, A.W. Musumeci, and W. Martens: Thermochim. Acta, 2005, vol. 432, pp. 30–35. https://doi.org/10.1016/j.tca.2005.04.001.

    Article  CAS  Google Scholar 

  42. C.X. Li, Z.G. Deng, C. Wei, G. Fan, X.B. Li, M.T. Li, and Y.Z. Wang: Hydrometallurgy, 2018, vol. 178, pp. 294–300. https://doi.org/10.1016/j.hydromet.2018.05.012.

    Article  CAS  Google Scholar 

  43. F.X. Yang, Y.B. Xing, Z.G. Deng, C. Wei, X.B. Li, and M.T. Li: Int. J. Chem. Reactor Eng., 2021, vol. 19(10), pp. 1103–113. https://doi.org/10.1515/ijcre-2021-0010.

    Article  CAS  Google Scholar 

  44. Z.G. Deng, B.P. Zhu, P. Zeng, C. Wei, X.B. Li, C.X. Li, and G. Fan: Can. Metall. Q., 2018, vol. 58(2), pp. 223–31. https://doi.org/10.1080/00084433.2018.1535929.

    Article  CAS  Google Scholar 

  45. K. Kaplun, J. Li, N. Kawashima, and A.R. Gerson: Geochim. Cosmochim. Acta, 2011, vol. 75(20), pp. 5865–78. https://doi.org/10.1016/j.gca.2011.07.003.

    Article  CAS  Google Scholar 

  46. S.M. Javad Koleini, V. Aghazadeh, and A. Sandström: Miner. Eng., 2011, vol. 24(5), pp. 381–86. https://doi.org/10.1016/j.mineng.2010.11.008.

    Article  CAS  Google Scholar 

  47. H.S. Xu, C. Wei, C.X. Li, G. Fan, Z.G. Deng, X.J. Zhou, and S. Qiu: Sep. Purif. Technol., 2012, vol. 85, pp. 206–12. https://doi.org/10.1016/j.seppur.2011.10.012.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express the sincere appreciation to the financial support of the National Natural Science Foundation of China (Project No. 21978122 and 21566017).

Conflict of interest

There is no ethical/legal conflict involved in the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yalong Liao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, J., Ji, G., Liao, Y. et al. Study on Selective Leaching of Copper and Simultaneous Precipitation of Iron in Polymetallic Complex Chalcopyrite by Hydrothermal Leaching Under Oxygen Pressure. Metall Mater Trans B 54, 2575–2590 (2023). https://doi.org/10.1007/s11663-023-02858-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02858-6

Navigation