Skip to main content
Log in

On the Role of Turbostratic Graphite in the Crystallization of Spheroidal Graphite During the Liquid-to-Solid Transformation

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

While turbostratic graphite is documented in many forms of graphite, there is a paucity of information on its contribution to the crystallization of spheroidal graphite (SG) in cast iron. SAD on SG and discussion of deep-etched SEM samples, demonstrates that it is an integral part of the crystallization sequence of SG. It is found in the core region, but also in the outer shell. This imposes a reevaluation of current theories of SG crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data availability

None.

References

  1. R.B. More, A.D. Haubold, and J.C. Bokros: in Biomaterial Science. B.D. Ratner, A.S. Hoffman, and F.J. Schoen, eds., Elsevier Inc., Academic Press, London, 2013, pp. 209–22. https://doi.org/10.1016/B978-0-08-087780-8.00023-1.

    Chapter  Google Scholar 

  2. D.D. Li, R.X. Tan, J.X. Gao, B.Q. Wei, Z.Q. Fan, Q.H. Huang, and K.J. He: Carbon, 2017, vol. 111, pp. 428–38. https://doi.org/10.1016/j.carbon.2016.10.018.

    Article  CAS  Google Scholar 

  3. J.N. Rouzaud and A. Oberlin: Carbon, 1989, vol. 27(4), pp. 517–29. https://doi.org/10.1016/0008-6223(89)90002-X.

    Article  CAS  Google Scholar 

  4. H.D. Merchant: in Recent Research in Cast Iron. H.D. Merchant, ed., Gordon and Breach Sci Publishers, New York, 1968, pp. 1–100.

    Google Scholar 

  5. H. Morrogh and W.J. Williams: J. Iron Steel Inst., 1947, vol. 155, pp. 321–71.

    Google Scholar 

  6. D.M. Stefanescu: in ASM Handbook Vol. 1A Cast Iron Science and Technology. D.M. Stefanescu, ed., ASM International, Materials Park, OH, 2017, pp. 59–80.

    Chapter  Google Scholar 

  7. G. Alonso, T. Tokarski, D.M. Stefanescu, M. Górny, G. Cios, and R. Suarez: Carbon, 2022, vol. 199, pp. 170–80. https://doi.org/10.1016/j.carbon.2022.07.045.

    Article  CAS  Google Scholar 

  8. D.D. Double and A. Hellawell: Acta Metall., 1974, vol. 22, pp. 481–87. https://doi.org/10.1016/0001-6160(74)90101-1.

    Article  CAS  Google Scholar 

  9. M.B. Haanstra, W.F. Knippenber, and G. Verspui: J. Cryst. Growth, 1972, vol. 16, pp. 71–79. https://doi.org/10.1016/0022-0248(72)90091-7.

    Article  CAS  Google Scholar 

  10. B. Miao, D.O. Northwood, W. Bian, K. Fang, and M. Fan: J. Mater. Sci., 1994, vol. 29, pp. 255–61. https://doi.org/10.1007/BF00356601.

    Article  CAS  Google Scholar 

  11. D.D. Li, R.X. Tan, J.X. Gao, B.Q. Wei, Z.Q. Fan, Q.Z. Huang, and K.J. He: Carbon, 2017, vol. 111, pp. 428–38.

    Article  CAS  Google Scholar 

  12. V.N. Kvasnitsa, V.G. Yatsenko, and J.A. Jaszczak: Can. Mineral., 1999, vol. 37, pp. 951–60.

    CAS  Google Scholar 

  13. K. He, H.R. Daniels, A. Brown, R. Brydson, and D.V. Edmonds: Acta Mater., 2007, vol. 55, pp. 2919–27. https://doi.org/10.1016/j.actamat.2006.12.029.

    Article  CAS  Google Scholar 

  14. T. Hara, T. Kitagawa, K. Kuroki, et al.: Mater. Trans., 2014, vol. 55, pp. 1500–05. https://doi.org/10.2320/matertrans.M2014167.

    Article  CAS  Google Scholar 

  15. K. Theuwissen, J. Lacaze, and L. Laffont: Carbon, 2016, vol. 96, pp. 1120–1286. https://doi.org/10.1016/j.carbon.2015.10.066.

    Article  CAS  Google Scholar 

  16. J. Bourdie, J. Lacaze, L. Laffont, and C. Josse: Int. J. Metalcast., 2020, vol. 14, pp. 672–80. https://doi.org/10.1007/s40962-019-00388-z.

    Article  CAS  Google Scholar 

  17. S. Amini and R. Abbaschian: Carbon, 2013, vol. 51, pp. 110–23. https://doi.org/10.1016/j.carbon.2012.08.019.

    Article  CAS  Google Scholar 

  18. J. Qing, V.L. Richards, and D.C. Van Aken: Carbon, 2017, vol. 116, pp. 456–69. https://doi.org/10.1016/j.carbon.2017.01.063.

    Article  CAS  Google Scholar 

  19. D.M. Stefanescu, G. Alonso, P. Larrañaga, E. De la Fuente, and R. Suarez: Int. J. Metalcast., 2018, vol. 12, pp. 722–52. https://doi.org/10.1007/s40962-017-0204-1.

    Article  CAS  Google Scholar 

  20. J.P. Sadocha and J.E. Gruzleski: in The Metallurgy of Cast Iron. B. Lux, I. Minkoff, and F. Mollard, eds., Georgi Publishing Co., St Saphorin, 1975, pp. 443–59.

    Google Scholar 

  21. E. Ghassemali, J.C. Hernando, D.M. Stefanescu, A. Dioszegi, A.E.W. Jarfors, J. Dluhoš, and M. Petrenec: Scripta Mater., 2019, vol. 161, pp. 66–69. https://doi.org/10.1016/j.scriptamat.2018.10.018.

    Article  CAS  Google Scholar 

  22. G.R. Purdy, and M. Audier: Mater Res. Soc. Symp. Proc., North-Holland, NY, 1985. pp. 13–23.

  23. M.J. Lalich and J.R. Hitchings: Trans. AFS, 1976, vol. 84, pp. 653–64.

    CAS  Google Scholar 

  24. D.M. Stefanescu, G. Alonso, P. Larrañaga, E. De la Fuente, and R. Suarez: Acta Mater., 2017, vol. 139, pp. 109–21. https://doi.org/10.1016/j.actamat.2017.08.004.

    Article  CAS  Google Scholar 

  25. J. Qing, M. Xu, and V. Pikhovich: Int. J. Metalcast., 2020, vol. 14, pp. 1115–22. https://doi.org/10.1007/s40962-020-00443-0.

    Article  CAS  Google Scholar 

  26. D.M. Stefanescu: Metals, 2020, vol. 10, p. 221. https://doi.org/10.3390/met10020221.

    Article  CAS  Google Scholar 

  27. D. Ugarte: Nature, 1992, vol. 359, pp. 707–09. https://doi.org/10.1038/359707a0.

    Article  CAS  Google Scholar 

  28. I. Pencea, D.M. Ştefănescu, R. Ruxanda, and F.V. Anghelina: Key Eng. Mater., 2011, vol. 457, pp. 120–25. https://doi.org/10.4028/www.scientific.net/kem.457.120.

    Article  CAS  Google Scholar 

  29. A. Ohbuchi, K. Otori, K. Hagiwara, Y. Koike, and T. Nakamura: ISIJ Int., 2021, vol. 61, pp. 2249–55. https://doi.org/10.2355/isijinternational.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Diputacion Foral de Bizkaia for supporting this research.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doru Michael Stefanescu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefanescu, D.M., Tokarski, T., Alonso, G. et al. On the Role of Turbostratic Graphite in the Crystallization of Spheroidal Graphite During the Liquid-to-Solid Transformation. Metall Mater Trans B 54, 2283–2290 (2023). https://doi.org/10.1007/s11663-023-02854-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02854-w

Navigation