Skip to main content
Log in

Quantitative Investigation on the Evolution of Ti(Cx, N1−x) in Ultra-high-Strength Steel Slab During TSCR Process: Precipitation and Redissolution

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The second phase in the slab has a significant impact on the quality and property of the slab and the final product. It is essential to understand the ‘precipitation–redissolution’ evolution law of the second phase in the TSCR process to regulate it rationally. The ‘precipitation–redissolution’ evolution behavior of Ti(Cx, N1−x) in slab during TSCR process of ultra-high-strength steel was investigated by simulation experiments, and its effect on austenite grain boundary pinning force and solid solution amount of microalloying elements was analyzed. The results indicate that Ti(Cx, N1−x) shows ‘precipitation–redissolution–coarsening’ behavior during the TSCR process. Ti(Cx, N1−x) redissolved 15.96 pct during reheating, and the maximum size of Ti(Cx, N1−x) particles increased by 6.67 pct during the holding process. Before and after the soaking process, the maximum size of Ti(Cx, N1−x) particles in TSCR process decreased by 42.34 pct, while it increased by 8.02 pct in the traditional process. The pinning force of Ti(Cx, N1−x) on austenite grain boundary in TSCR process is always lower than in the traditional process, and it reaches a maximum at the end of continuous casting. The solid solution amount of Ti element in the TSCR slab before rolling is 1.26 times that of the traditional process, providing a significant solid solution advantage. The research results offer theoretical guidance for regulating the product quality and property of ultra-high-strength steel TSCR process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L.B. Yang: Iron Steel, 2022, vol. 57, pp. 1–10.

    Google Scholar 

  2. B. Pereda, B. Lopez, and J.M. Rodriguez-Ibabe: Tecnol. Metal. Mater. Min., 2020, vol. 17, pp. 124–30.

    Article  CAS  Google Scholar 

  3. X.P. Mao, X.D. Huo, Y.L. Kang, Z.Y. Lin, J. Zhou, X.J. Sun, and R.Y. Yin: Chin. J. Eng., 2006, vol. 28, pp. 1023–28.

    Article  CAS  Google Scholar 

  4. X.P. Mao, Q.L. Chen, and X.J. Sun: J. Iron Steel Res. Int., 2014, vol. 21, pp. 30–40.

    Article  CAS  Google Scholar 

  5. S.Z. Wang, Z.J. Gao, G.L. Wu, and X.P. Mao: Int. J. Miner. Metall. Mater., 2022, vol. 29, pp. 645–61.

    Article  CAS  Google Scholar 

  6. Q.R. Tian, G.C. Wang, Y. Zhao, J. Li, and Q. Wang: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1149–64.

    Article  Google Scholar 

  7. T. Liu, M.J. Long, D.F. Chen, H.M. Duan, L.T. Gui, S. Yu, J.S. Cao, H.B. Chen, and H.L. Fan: J. Iron Steel Res. Int., 2018, vol. 25, pp. 1043–53.

    Article  Google Scholar 

  8. L.T. Gui, M.J. Long, H.H. Zhang, D.F. Chen, S. Liu, Q.Z. Wang, and H.M. Duan: J. Mater. Res. Technol., 2020, vol. 9, pp. 5499–5514.

    Article  CAS  Google Scholar 

  9. T. Liu, D.F. Chen, M.J. Long, P. Liu, H.M. Duan, L.T. Gui, H.L. Fan, and H.B. Chen: Met. Sci. Heat Treat., 2020, vol. 61, pp. 534–42.

    Article  CAS  Google Scholar 

  10. Q.R. Tian, G.C. Wang, D.L. Shang, H. Lei, X.H. Yuan, Q. Wang, and J. Li: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 3137–50.

    Article  Google Scholar 

  11. J. Guo, S.S. Cheng, H.J. Guo, and Y.G. Mei: Sci. Rep., 2019, vol. 9, p. 2929.

    Article  Google Scholar 

  12. H.H. Zhang, J.L. Wu, W. Guo, S.Y. Ai, M.J. Long, D.F. Chen, and H.M. Duan: TMS 2022, 151st Annu. Meet. Exhib. Suppl. Proc., 2022, pp. 927–40.

  13. Y.Z. Lou, D.L. Liu, and X.Q. Ni: J. Iron Steel Res. Int., 2009, vol. 16, pp. 60–66.

    Article  CAS  Google Scholar 

  14. S.J. Chen, L.J. Li, Z.W. Peng, X.D. Huo, and J.X. Gao: J. Mater. Res. Technol., 2020, vol. 9, pp. 15759–70.

    Article  CAS  Google Scholar 

  15. X.P. Mao, X.J. Sun, and S.Z. Wang: Iron Steel, 2016, vol. 51, pp. 52–59.

    CAS  Google Scholar 

  16. B. Mintz: ISIJ Int., 1999, vol. 39, pp. 833–55.

    Article  CAS  Google Scholar 

  17. S.Y. Ai, M.J. Long, X.H. Yang, D.F. Chen, and H.M. Duan: J. Mater. Res. Technol., 2023, vol. 22, pp. 1103–17.

    Article  CAS  Google Scholar 

  18. S.Y. Ai, M.J. Long, W. Guo, P. Liu, D.F. Chen, Z.H. Dong, Y.M. Zhang, and H.M. Duan: Steel Res. Int., 2020, vol. 91, p. 2000070.

    Article  CAS  Google Scholar 

  19. R. Abushosha, O. Comineli, and B. Mintz: Mater. Sci. Technol., 1999, vol. 15, pp. 278–86.

    Article  CAS  Google Scholar 

  20. H. Lee, K.S. Park, J.H. Lee, Y.U. Heo, D.W. Suh, and H.K.D.H. Bhadeshia: ISIJ Int., 2014, vol. 54, pp. 1677–81.

    Article  CAS  Google Scholar 

  21. A. Jaklič, F. Vode, and T. Kolenko: Appl. Therm. Eng., 2007, vol. 27, pp. 1105–14.

    Article  Google Scholar 

  22. L.T. Gui, D.F. Chen, P. Liu, T. Liu, M.J. Long, H.M. Duan, and J.S. Cao: Mater. Sci. Technol. Conf. Exhib., 2017, vol. 2, pp. 900–07.

  23. Q.L. Yong, B.R. Wu, Z.B. Sun, and G.J. Wang: J. Iron Steel Res., 1989, vol. 4, pp. 47–52.

    Google Scholar 

  24. X. Mao: Titanium Microalloyed Steel: Fundamentals, Technology, and Products, Springer, Berlin, 2019.

    Book  Google Scholar 

  25. H.X. Ma and Y.G. Li: J. Mater. Sci. Eng., 2002, vol. 3, pp. 328–30.

    Google Scholar 

  26. J. Dong, C. Liu, Y. Liu, C. Li, Q. Guo, and H. Li: Fusion Eng. Des., 2017, vol. 125, pp. 415–22.

    Article  CAS  Google Scholar 

  27. H.R. Peng, W. Liu, H.Y. Hou, and F. Liu: Materialia, 2019, vol. 5, p. 100225.

    Article  CAS  Google Scholar 

  28. D. Dong, F. Chen, and Z. Cui: J. Mater. Eng. Perform., 2016, vol. 25, pp. 152–64.

    Article  CAS  Google Scholar 

  29. I. Andersen and O. Grong: Acta Metall. Mater., 1995, vol. 43, p. 2673.

    Article  CAS  Google Scholar 

  30. J.Z. An, Z.Z. Cai, and M.Y. Zhu: Int. J. Miner. Metall. Mater., 2022, vol. 29, pp. 2172–80.

    Article  CAS  Google Scholar 

  31. M.Z. Bai, D.L. Liu, Y.Z. Lou, X.P. Mao, L.J. Li, and X.D. Huo: Int. J. Miner. Metall. Mater., 2006, vol. 13, pp. 230–34.

    CAS  Google Scholar 

  32. K. Kunishige and N. Nagao: ISIJ Int., 1989, vol. 29, pp. 940–46.

    Article  CAS  Google Scholar 

  33. Z.F. Wu, R. Wu, B. Han, C. Zhang, and J.J. Yang: Hot Work. Technol., 2012, vol. 41, pp. 36–39.

    Google Scholar 

Download references

Acknowledgments

The work is financially supported by the National Natural Science Foundation of China (Project Nos. 52274321 and U1960113).

Conflict of interest

The authors declare that they have no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mujun Long or Dengfu Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Wan, L., Long, M. et al. Quantitative Investigation on the Evolution of Ti(Cx, N1−x) in Ultra-high-Strength Steel Slab During TSCR Process: Precipitation and Redissolution. Metall Mater Trans B 54, 2492–2502 (2023). https://doi.org/10.1007/s11663-023-02850-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02850-0

Navigation