Skip to main content
Log in

Competitive Precipitation Mechanism Between TixOy and TiN Inclusions Dependent on Nucleation Pathways in Ti-Contained Steel Solidification Process

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

TiN and TixOy (Ti3O5, Ti2O3, TiO2) are commonly encountered inclusions, which significantly affect the process control and the final mechanical properties of micro-alloyed steels containing Ti. Thermodynamic calculation indicates that the competitive precipitation between TixOy species depends on [pct O] and temperature at a fixed [pct Ti]0. The critical value of [pct O]0 for the competitive precipitation of TixOy species decreases with precipitate order from TiO2 → Ti3O5 → Ti2O3 and decreases with decreasing temperature. The preferential precipitation sequence between TixOy and TiN depend on the closed relation with temperature, [pct N]0 or [N]/[O] ratio. The critical values of [pct N]0 ratio for the preferential precipitation of TiN inclusion decrease with the decreasing of temperature, and the critical [N]/[O] ratio increases with the increasing of [pct O]0. Furthermore, DFT calculation indicated that the competitive precipitation between TiN and TixOy depend on the nucleation pathways and the relative stability of pre-nucleation clusters (TixOy)n vs (TiN)n. The result shows that the required [pct N] for (TixOy)n cluster transforming into TiN inclusion increases with increasing (TixOy)n cluster size. The critical value of [N]/[O] ratio for bulk TixOy transforming into TiN inclusion is higher than that for (TixOy)n cluster transforming into TiN inclusion. The reaction of (TiN)n cluster with [O] to form TixOy inclusion is facilitated by (TiN)n cluster being highly unstable in steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Zhou and H. Yu: Int. J. Min. Met. Mater., 2012, vol. 19, pp. 805–11.

    Article  CAS  Google Scholar 

  2. T. Uesugi: Tetsu-to-Hagané, 1986, vol. 26, pp. 614–20.

    Google Scholar 

  3. Q.R. Tian, G.C. Wang, D.L. Shang, H. Lei, X.H. Yuan, Q. Wang, and J. Li: Metall. Mater. Trans. B, 2018, vol. 49, pp. 3137–50.

    Article  CAS  Google Scholar 

  4. J.S. Byun, J.H. Shim, Y.W. Cho, and D.N. Lee: Acta. Mater., 2003, vol. 51, pp. 1593–1606.

    Article  CAS  Google Scholar 

  5. J.H. Shim, Y.W. Cho, S.H. Chung, J.D. Shim, and D.N. Lee: Acta Mater., 1999, vol. 47, pp. 2751–60.

    Article  CAS  Google Scholar 

  6. S.H. Nedjad and A. Farzaneh: Scr. Mater., 2007, vol. 57, pp. 937–40.

    Article  Google Scholar 

  7. Z.B. Yang, F.M. Wang, S. Wang, and B. Song: Steel. Res. Int., 2008, vol. 79, pp. 390–95.

    Article  CAS  Google Scholar 

  8. J.H. Shim, Y.J. Oh, J.Y. Suh, Y.W. Cho, J.D. Shim, J.S. Byun, and D.N. Lee: Acta. Mater., 2001, vol. 49, pp. 2115–22.

    Article  CAS  Google Scholar 

  9. J.M. Gregg and H. Bhadeshia: Acta. Mater., 1997, vol. 45, pp. 739–48.

    Article  CAS  Google Scholar 

  10. N. Kikuchi, S. Nabeshima, Y. Kishimoto, and S. Sridhar: ISIJ Int., 2011, vol. 51, pp. 2019–2028.

    Article  CAS  Google Scholar 

  11. N. Kikuchi, S. Nabeshima, Y. Kishimoto, and S. Sridhar: ISIJ Int., 2008, vol. 49, pp. 934–43.

    Article  Google Scholar 

  12. R.J. Fruehan: Metall. Trans., 1970, vol. 1, pp. 3403–10.

    Article  CAS  Google Scholar 

  13. J.J. Pak, J.O. Jo, S.I. Kim, W.Y. Kim, T.I. Chung, S.M. Seo, J.H. Park, and D.S. Kim: ISIJ. Int., 2007, vol. 47, pp. 16–24.

    Article  CAS  Google Scholar 

  14. W.Y. Cha, T. Miki, Y. Sasaki, and M. Hino: ISIJ. Int., 2006, vol. 46, pp. 987–95.

    Article  CAS  Google Scholar 

  15. G.V. Pervushin and H. Suito: ISIJ. Int., 2001, vol. 41, pp. 728–37.

    Article  CAS  Google Scholar 

  16. W.J. Ma, Y.P. Bao, L.H. Zhao, and M. Wang: Int. J. Min. Met. Mater., 2014, vol. 21, pp. 234–39.

    Article  CAS  Google Scholar 

  17. L. Yang, G. Cheng, S. Li, et al.: ISIJ Int., 2015, vol. 55, pp. 1901–05.

    Article  CAS  Google Scholar 

  18. S.K. Michelic: Scanning., 2017, vol. 2017, p. 2326750.

    Article  CAS  Google Scholar 

  19. M. Lee and J.H. Park: Metall. Mater. Trans. B, 2018, vol. 49, pp. 877–93.

    Article  CAS  Google Scholar 

  20. H.Y. Liu, H.L. Wang, L. Li, J.Q. Zheng, Y.H. Li, and X.Y. Zeng: Ironmak. Steelmak., 2011, vol. 38, pp. 53–58.

    Article  Google Scholar 

  21. Q.R. Tian, G.C. Wang, Y. Zhao, and Q. Wang: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1149–64.

    Article  CAS  Google Scholar 

  22. P. Jin, D. Shang, G. Wang, et al.: Steel. Res. Int., 2021, vol. 92, p. 2000614.

    Article  CAS  Google Scholar 

  23. Z.W. Qu and G.J. Kroes: J. Phys. Chem. C, 2007, vol. 111, pp. 16808–17.

    Article  CAS  Google Scholar 

  24. M.Y. Chen and D.A. Dixon: J. Chem. Theory. Comput., 2013, vol. 19, pp. 3189–3200.

    Article  Google Scholar 

  25. S.K. Choudhary and A. Ghosh: ISIJ. Int., 2009, vol. 49, pp. 1819–27.

    Article  CAS  Google Scholar 

  26. J. Fu, J. Zhu, L. Di, F.S. Tong, D.L. Liu, and Y.L. Wang: Acta Metall. Sin., 2000, vol. 36, pp. 801–04.

    CAS  Google Scholar 

  27. X. Huang: Iron and Steel Metallurgy Principle, 4th ed. Metallurgical Industry Press, Beijing, 2014, p. 181.

    Google Scholar 

  28. V. Descotes, T. Quatravaux, J.P. Bellot, S. Witzke, and A. Jardy: Metals, 2020, vol. 10(4), p. 541.

    Article  CAS  Google Scholar 

  29. J.H. Shin and J.H. Park: Metall. Mater. Trans. B, 2020, vol. 51, pp. 1211–24.

    Article  CAS  Google Scholar 

  30. Q. Shu, V.V. Visuri, T. Alatarvas, and T. Fabritius: Metall. Mater. Trans. B, 2020, vol. 51, pp. 2905–16.

    Article  Google Scholar 

  31. D. Liu, S. Song, Z. Xue, J. Zietsman, J. Qi, and Z. Deng: Metall. Mater. Trans. B, 2022, vol. 13, pp. 1–3.

    Google Scholar 

  32. L. Gui, M. Long, H. Zhang, D. Chen, S. Liu, Q. Wang, and H. Duan: J. Mater. Res. Technol., 2020, vol. 9(3), pp. 5499–5514.

    Article  CAS  Google Scholar 

  33. T. Liu, D. Chen, M. Long, P. Liu, H. Duan, L. Gui, H. Fan, and H. Chen: Met. Sci. Heat Treat., 2020, vol. 61, pp. 534–42.

    Article  CAS  Google Scholar 

  34. Y. Dali, S.K. Michelic, P. Peter, et al.: Metals, 2017, vol. 7(11), pp. 460–60.

    Article  Google Scholar 

  35. E. Scheil and Z. Metallkd: Research Gate, 1942, vol. 34, pp. 70–72.

    Google Scholar 

  36. Y. Liu, L.F. Zhang, H.J. Duan, Y. Zhang, Y. Luo, and A.N. Conejo: Metall. Mater. Trans. A, 2016, vol. 47, pp. 3015–3025.

    Article  CAS  Google Scholar 

  37. P. Jin, D. Shang, G. Wang, et al.: Steel Res. Int., 2021, vol. 92(6), p. 2000614.

    Article  CAS  Google Scholar 

  38. B. Li, H. Zhu, J. Sun, et al.: Steel Res. Int., 2022, vol. 93(8), p. 2200064.

    Article  CAS  Google Scholar 

  39. Z. Wu, R.E. Cohen, and D.J. Singh: Phys. Rev. B, 2004, vol. 70, 104112.

    Article  Google Scholar 

  40. Z. Wu and R.E. Cohen: Phys. Rev. B, 2006, vol. 73, 235116.

    Article  Google Scholar 

  41. Z.W. Qu and G.J. Kroes: J. Phys. Chem. B, 2006, vol. 110, pp. 23306–14.

    Article  CAS  Google Scholar 

  42. Y. Xiao, H. Lei, B. Yang, G. Wang, Q. Wang, and W. Jin: Rsc. Adv., 2018, vol. 8, pp. 38336–45.

    Article  CAS  Google Scholar 

  43. Y. Xiao, G. Wang, P. Jin, et al.: Metall. Mater. Trans. B, 2021, vol. 52, pp. 3315–31.

    Article  CAS  Google Scholar 

  44. Y. Xiao, L. Cao, G. Wang, et al.: Metall. Mater. Trans. B, 2022, vol. 53, pp. 916–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52174318 and 51874170) and the Natural Science Foundation of Liaoning Province (2022-BS-282) for supporting this work.

Conflict of interest

There are no conflicts to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guocheng Wang or Seetharaman Sridhar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Xiao, Y., Yang, Y. et al. Competitive Precipitation Mechanism Between TixOy and TiN Inclusions Dependent on Nucleation Pathways in Ti-Contained Steel Solidification Process. Metall Mater Trans B 54, 2479–2491 (2023). https://doi.org/10.1007/s11663-023-02849-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02849-7

Navigation