Skip to main content
Log in

Purification of Mg–Gd–Zr Alloys With Pulsed Electric Current

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The addition of rare earth elements has a strong purification ability because it reduces the number of inclusions with size greater than 10 µm in rare earth magnesium alloys. However, the residual small inclusions are difficult to separate due to Brownian motion, which seriously reduces the mechanical property of magnesium alloys. In this study, using the conductivity difference between the inclusion and the melt, the electric driving force for purifying rare earth magnesium alloy, which is not affected by the size of the inclusion, is introduced. Compared with the static precipitation method, the pulsed electric current purification method can remove up to 63 pct of the inclusions in 10 minutes. The electromagnetic purification technology has the advantages of fast, efficient and environmental protection, which provides a new idea for further optimizing the property of rare earth magnesium alloys.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Elsayed, E. Vandersluis, S. Lun Sin, and C. Ravindran: Int. J. Metalcast., 2016, vol. 11, pp. 749-765.

  2. H.X. Cao, M.T. Huang, C.C. Wang, S.Y. Long, J.L. Zha, and G.Q. You: J. Magnes. Alloys, 2019, vol. 7, pp. 370–80.

    Article  CAS  Google Scholar 

  3. E. Karakulak: J. Magnes. Alloys., 2019, vol. 7, pp. 355–69.

    Article  CAS  Google Scholar 

  4. J.K. Wang, C.M. Liu, S.N. Jiang, Y.C. Wan, and Z.Y. Chen: J. Magnes. Alloys., 2023, vol. 24, pp. 3548–4356.

    CAS  Google Scholar 

  5. M. Liu and G.L. Song: Corros. Sci., 2013, vol. 77, pp. 143–50.

    Article  CAS  Google Scholar 

  6. F.S. Pan, J.J. Mao, X.H. Chen, J. Peng, and J.F. Wang: Trans. Nonferrous Met. Soc. China, 2010, vol. 20, pp. 1299–304.

    Article  CAS  Google Scholar 

  7. J.F. Song, J. She, D.L. Chen, and F.S Pan: J. Magnes. Alloys, 2020, vol. 8, pp. 1-41.

  8. M.K. Kulekci: Int. J. Adv. Des. Manuf. Technol., 2007, vol. 39, pp. 851–65.

    Article  Google Scholar 

  9. A.A. Luo: J. Magnes. Alloys, 2013, vol. 1, pp. 2–2.

    Article  CAS  Google Scholar 

  10. C. Blawert, D. Fechner, D. Höche, V. Heitmann, W. Dietzel, K.U. Kainer, P. Živanović, C. Scharf, A. Ditze, J. Gröbner, and R. Schmid-Fetzer: Corros. Sci., 2010, vol. 52, pp. 2452–68.

    Article  CAS  Google Scholar 

  11. G.H. Wu, C.L. Wang, M. Sun, and W.J. Ding: J. Magnes. Alloys, 2021, vol. 9, pp. 1–20.

    Article  CAS  Google Scholar 

  12. K. Maruyama, M. Suzuki, and H. Sato: J. Metall. Mater. Trans., 2002, vol. 33, pp. 875–82.

    Article  Google Scholar 

  13. F.S. Pan, M.B. Yang, and X.H. Chen: J. Mater. Sci. Technol., 2016, vol. 32, pp. 1211–21.

    Article  CAS  Google Scholar 

  14. H.S. Yu, X.F. Guo, and H.B. Cui: China Foundry, 2021, vol. 18, pp. 9–17.

    Article  Google Scholar 

  15. C.D. Yim, N.E. Kang, and B.S. You: Met. Mater. Int., 2010, vol. 16, pp. 377–81.

    Article  CAS  Google Scholar 

  16. K. Wang, J.F. Wang, X.X. Dou, Y.D. Huang, N. Hort, S. Gavras, S.J. Liu, Y.W. Cai, J.X. Wang, and F.S. Pan: J. Mater. Sci. Technol., 2020, vol. 52, pp. 72–82.

    Article  Google Scholar 

  17. L.B. Ren, L.L. Fan, M.Y. Zhou, Y.Y. Guo, Y.W.X. Zhang, C.J. Boehlert, and G.F. Quan: Int. J. Lightweight Mater. Manuf., 2018, vol. 1, pp. 81–8.

    Google Scholar 

  18. W.B. Zhao, K. Zhang, E. Guo, L. Zhao, X.H. Tian, and C.L. Tan: Scripta Mater., 2022, vol. 207, 114316.

    Article  CAS  Google Scholar 

  19. S.H. Lv, Q.A. Yang, F.Z. Meng, and J. Meng: Characterizations on the instantaneously formed Ni-containing intermetallics in magnesium alloys, 2022, https://doi.org/10.1016/j.jma.2021.11.032(J.Magnes.Alloys.,2022).Accessed27January.

    Article  Google Scholar 

  20. H. Matsubara, Y. Ichige, K. Fujita, H. Nishiyama, and K. Hodouchi: Corros. Sci., 2013, vol. 66, pp. 203–10.

    Article  CAS  Google Scholar 

  21. R.G. Li, F. Asghar, J.H. Zhang, G.Y. Fu, Q. Liu, B.T. Guo, Y.M. Yu, S.G. Guo, Y. Su, X.J. Chen, and L. Zong: Acta Metall. Sin. (Engl. Lett.), 2018, vol. 32, pp. 245–52.

  22. J.I. Kim, H.N. Nguyen, and B.S. You: Scripta Mater., 2019, vol. 162, pp. 355–60.

    Article  CAS  Google Scholar 

  23. Y.M. Zhu, A.J. Morton, and J.F. Nie: Acta Mater., Acta Mater., 2012, vol. 60, pp. 6562–72.

  24. X.F. Zhang and R.S. Qin: Appl. Phys. Lett., 2014, vol. 104, 114106.

    Article  Google Scholar 

  25. Y.N. Lyu, R. Ding, G.M. Xu, and T. Jiang: Mater. Lett., 2020, vol. 274, 127981.

    Article  CAS  Google Scholar 

  26. Y.M. Sun, X.S. Huang, C.H. Liu, M.C. Zhou, and X.F. Zhang: J. Alloys Compd., 2023, vol. 934, 167903.

    Article  CAS  Google Scholar 

  27. J.I. Tani and H. Ishikawa: Mater. Lett., 2020, vol. 262, 127056.

    Article  CAS  Google Scholar 

  28. A. Kumar and S.K. Paul: Materialia, 2020, vol. 14, 100906.

    Article  CAS  Google Scholar 

  29. X.F. Zhang and L.G. Yan: Acta Metall. Sin., 2020, vol. 56, pp. 257–77.

    Google Scholar 

  30. S.Y. Qin, X. Ba, L.G. Yan, and X.F. Zhang: J. Nucl. Mater., 2021, vol. 554, 153103.

    Article  CAS  Google Scholar 

  31. X.C. Yuan, M.N. Liu, K.W. Wei, F.Z. Li, X.Y. Li, and X.Y. Zeng: Mater. Sci. Eng. A, 2022, vol. 850, 143572.

    Article  CAS  Google Scholar 

  32. L.H. Wang, A. Jalar, and L.H. Dan: J. Alloys Compd., 2023, vol. 936, 168278.

    Article  CAS  Google Scholar 

  33. L.D. Yang, Q.A. Li, X.Y. Chen, and L.P. Yan,: J. Mater. Res. Technol., 2022, vol. 19, pp. 4031–43.

  34. G.Z. Zhang, L.G. Yan, and X.F. Zhang: ISIJ Int., 2020, vol. 60, pp. 815–22.

    Article  CAS  Google Scholar 

  35. Y.N. Chen, Y.P. Bao, M. Wang, X.F. Cai, L.J. Wang and L.H. Zhao: ISIJ Int., 2014, vol. 54, pp. 2215–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the National Natural Science Foundation of China (Grant Number U21B2082), Beijing Municipal Natural Science Foundation (Grant Number 2222065), and Fundamental Research Funds for the Central Universities (Grant Number FRF-TP-22-02C2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinfang Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Liu, C., Huang, X. et al. Purification of Mg–Gd–Zr Alloys With Pulsed Electric Current. Metall Mater Trans B 54, 2467–2478 (2023). https://doi.org/10.1007/s11663-023-02848-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02848-8

Navigation