Skip to main content
Log in

Phase Equilibrium Relationship of CaO–Al2O3–Ce2O3–MgO System at 1573 K

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The phase diagram information of CaO–Al2O3–Ce2O3-based system is of great significance for the design and development of rare earth steel metallurgical slag system. In this paper, the phase equilibria of CaO–Al2O3–Ce2O3 system and CaO–Al2O3–Ce2O3–MgO system were determined by the high temperature equilibrium experiment at 1573K; then the isothermal section for ternary system and isothermal spatial phase diagram for quaternary system were constructed, respectively. A total of 11 kinds of equilibrium phase fields were determined in the CaO–Al2O3–Ce2O3 system, including C2A3Ce–ACe–C2ACe, C2A3Ce–C3A–C2ACe, C2A3Ce–C3A–CA, C2A3Ce–ACe–CA2, C2A3Ce–CA–CA2, C2ACe–Ce, CA6–ACe, C2A3Ce–C2ACe, C–C3A–C2ACe, C–Ce–C2ACe, and Ce–ACe–C2ACe. A total of 10 kinds of equilibrium phase fields were determined in the CaO–Al2O3–Ce2O3–MgO system, including C2A3Ce–CA–CA2–MA, C2A3Ce–MA–CA8M2–ACe, C2A3Ce–C2ACe–ACe–M, C2A3Ce–CA–MA–M, C2A3Ce–ACe–MA–M, C2A3Ce–M, C2A3Ce–C3A2M, C–C3A–C2ACe–M, C2A3Ce–C3A–C2ACe–M, and C2A3Ce–CA2–CA7M–ACe. On this basis, the coexistence relation of the primary phase fields was determined and expressed in the form of alkemade lines/triangles/tetrahedrons. The alkemade lines constructed a total of 11 sub-solidus triangles (for ternary system) and 21 sub-solidus tetrahedrons (for quaternary system). Finally, the qualitative discussion was conducted on the modification laws of Al2O3 inclusions in rare earth steel under different RE, Ca, and Mg content conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G. Xu: Rare Earth, 2nd ed. Metallurgical Industry Press, Beijing, 1995.

    Google Scholar 

  2. C. Science and T. Press: The Chinese Society of Rare Earths, China Science and Technology Press, Beijing, 2016.

    Google Scholar 

  3. C. Li: J. Rare Earths, 2013, vol. 34, pp. 78–85.

    Google Scholar 

  4. C. Li: J. Rare Earths, 2001, vol. 022, pp. 1–6.

    Google Scholar 

  5. B. Song and H. Jin: Heilongjiang Metallurgy, 2009.

  6. Z.-S. Yu: Chin. J. Mater. Res., 1987.

  7. D. Wang, Y. Yao, X. Wang, and M. Jiang: Steelmaking, 2003, vol. 19, pp. 14–7.

    Google Scholar 

  8. Y. Yao: Dissertation of Northeastern University, 2004.

  9. J. Qi, C. Liu, C. Li, Y. Min, and M. Jiang: J. Non Cryst. Solids, 2021, vol. 568, p. 120945.

    Article  CAS  Google Scholar 

  10. J. Qi, C. Liu, H. Liu, C. Li, and M. Jiang: J. Non Cryst. Solids, 2021, vol. 559, p. 120681.

    Article  CAS  Google Scholar 

  11. D.V. Malakhov: Calphad, 2004, vol. 28, pp. 209–11.

    Article  CAS  Google Scholar 

  12. H. Guo: 2nd ed., Metallurgical Industry Press, Beijing, 2004, pp. 82–84.

  13. C. Liu: 1st ed., Higher Education Press, Beijing, 1995, pp. 141–42.

  14. J.P. Coughlin: J. Am. Chem. Soc., 1956, vol. 78, pp. 5479–82.

    Article  CAS  Google Scholar 

  15. M. Allibert, C. Chatillon, K.T. Jacob, and R. Lourtau: J. Am. Ceram. Soc., 1981, vol. 64, pp. 307–14.

    Article  CAS  Google Scholar 

  16. B. Hallstedt: J. Am. Ceram. Soc., 1990, vol. 73, pp. 15–23.

    Article  CAS  Google Scholar 

  17. Z. Zhao, X. Chen, B. Glaser, and B. Yan: Metall. Mater. Trans. B, 2018, vol. 50B, pp. 395–406.

    Google Scholar 

  18. R.C. Doman, J.B. Barr, R.N. McNally, and A.M. Alper: J. Am. Ceram. Soc., 1963, vol. 46, pp. 313–16.

    Article  CAS  Google Scholar 

  19. P. Wu, G. Eriksson, and A.D. Pelton: J. Am. Ceram. Soc., 1993, vol. 8, pp. 2065–75.

    Article  Google Scholar 

  20. M. Hillert and X. Wang: CALPHAD, 1989, vol. 13, pp. 215–311.

    Article  Google Scholar 

  21. W. Ping: J. Alloys Compd., 1992, vol. 179, pp. 259–87.

    Article  Google Scholar 

  22. I.H. Jung, S.A. Decterov, and A.D. Pelton: J. Phase Equilib. Diffus., 2004, vol. 25, pp. 329–45.

    Article  CAS  Google Scholar 

  23. L.M. Lopato, L.I. Lugin, and A.V. Shevchenko: Russ. J. Inorg. Chem., 1971, vol. 16, pp. 131–33.

    Google Scholar 

  24. M. Preda and R. Dinescu: Rev. Roum. Chim., 1976, vol. 21, pp. 1023–30.

    CAS  Google Scholar 

  25. S. Ueda, K. Morita, and N. Sano: ISIJ Int., 1998, vol. 38, pp. 1292–96.

    Article  CAS  Google Scholar 

  26. R. Kitano, M. Ishii, and U.O. Motohiro: ISIJ Int., 2016, vol. 56, pp. 1893–1901.

    Article  CAS  Google Scholar 

  27. X. Chen, T. Deng, Z. Zhao, and B. Yan: ISIJ Int., 2020, vol. 60, pp. 1602–09.

    Article  CAS  Google Scholar 

  28. B. Hallstedt: J. Am. Chem. Soc., 1995, vol. 78, pp. 193–98.

    CAS  Google Scholar 

  29. G.A. Rankin and H.E. Merwin: J. Am. Chem. Soc., 1916, vol. 38, pp. 568–88.

    Article  CAS  Google Scholar 

  30. D.R. Rhiger and R.E. Kvaas: J. Vac. Sci. Technol. A, 1983, vol. 1, pp. 1712–18.

    Article  CAS  Google Scholar 

  31. O.A. Kornienko, O.R. Andrievskaya, O.I. Bykov, A.V. Samelyuk, and Yu.M. Bataiev: J. Eur. Ceram. Soc., 2021, vol. 41, pp. 3603–13.

    Article  CAS  Google Scholar 

  32. J. Qiu and C. Liu: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 69–77.

    Article  Google Scholar 

  33. G. Hasemann, S. Ida, L. Zhu, T. Iizawa, K. Yoshimi, and M. Krüger: Mater. Des., 2020, vol. 185, p. 108233.

    Article  CAS  Google Scholar 

  34. R.W. Nurse, J.H. Welch, and A.J. Majumdar: Br. Ceram. Trans., 1965, vol. 64, pp. 409–18.

    CAS  Google Scholar 

  35. A.I. Leonov and É.K. Keler: Bull. Acad. Sci. USSR Div. Chem. Sci., 1962, vol. 11, pp. 1819–23.

    Article  Google Scholar 

Download references

Acknowledgments

The National Natural Science Foundation of China General Program (U1908224), the Fundamental Research Funds for the Central Universities (N2125019, N2325009), China Postdoctoral Science Foundation General Program (2020M680966), National Key R&D Program of China (2021YFC2901200), Young Elite Scientists Sponsorship Program by CAST (2022QNRC001), Liao Ning Revitalization Talents Program (XLYC2002047).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guojie Huo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, J., Huo, G. & Liu, C. Phase Equilibrium Relationship of CaO–Al2O3–Ce2O3–MgO System at 1573 K. Metall Mater Trans B 54, 2411–2425 (2023). https://doi.org/10.1007/s11663-023-02843-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02843-z

Navigation