Skip to main content
Log in

Electrolysis of Dissolved Phosphate in Molten CaCl2 Prepares High-Purity White Phosphorus

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This work demonstrates the feasibility of preparing high-purity P4 by electrolysis of dissolved phosphate in molten CaCl2 without complex purification. The purity of the electrolyzed P4, obtained from Ca3(PO4)2, was comparable to commercial 99.999 pct grade product. When using phosphate rock as the precursor, pre-electrolysis is necessary to effectively removing impurities. These results highlight the advantage of molten salt electrolysis over carbothermal reduction in efficiently preparing high-purity P4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. J.B. Leon, C.M. Sullivan, and A.R. Sehgal: J. Ren. Nutr., 2013, vol. 23, pp. 265–70.

    Article  CAS  Google Scholar 

  2. M. Dutartre, J. Bayardon, and S. Juge: Chem. Soc. Rev., 2016, vol. 45, pp. 5771–94.

    Article  CAS  Google Scholar 

  3. L. Goulart, L.D. Fernandes, C.L. dos Santos, and J. Rossato: Phys. Lett. A, 2019, vol. 383, p. 125945.

    Article  CAS  Google Scholar 

  4. H.M. Qiu, J.C. Wu, G.Q. Yang, B. Dong, and D.H. Li: Crop Prot., 2004, vol. 23, pp. 1041–48.

    Article  CAS  Google Scholar 

  5. Q. Liang, H.F. Yue, S.F. Wang, S.Y. Yang, K. Lam, and X.H. Hou: Electrochim. Acta, 2019, vol. 330, p. 135323.

    Article  Google Scholar 

  6. Y.G. Daniel and B.A. Howell: Polym. Degrad. Stab., 2017, vol. 140, pp. 25–31.

    Article  CAS  Google Scholar 

  7. S. Carenco, I. Resa, X. Le Goff, P. Le Floch, and N. Mezailles: Chem. Commun., 2008, vol. 22, pp. 2568–70.

    Article  Google Scholar 

  8. C.J. Xu, Q. Dai, L. Gaines, M. Hu, A. Tukker, and B. Steubing: Commun. Mater., 2020, vol. 1, p. 99.

    Article  Google Scholar 

  9. J.B. Readman: U.S. Patent US417943, 1889.

  10. A.R. Jupp, S. Beijer, G.C. Narain, W. Schipper, and J.C. Slootweg: Chem. Soc. Rev., 2021, vol. 50, pp. 87–101.

    Article  CAS  Google Scholar 

  11. B. Wang and K.B. Luo: Adv. Mater. Res., 2014, vol. 881–883, pp. 70–73.

    Google Scholar 

  12. The National Academies Press: Food Chemicals Codex, 5th ed. The National Academies Press, Washington, DC, 2004, pp. 331–32.

    Google Scholar 

  13. U. Hiroto, N. Keiji, and O. Katsumi: J.P. Patent JP1992214796A, 1994.

  14. S. Rikito and M. Takeshi: J.P. Patent JP1991276332A, 1993.

  15. J. Legrand, P. Bourdauducq, and T. Bulinge: U.S. Patent US5283042A, 1994.

  16. Z. Zhang, X.Y. Zhang, X.J. He, X.P. Wang, and Y.L. Mi: Sep. Purif. Technol., 2012, vol. 98, pp. 249–54.

    Article  CAS  Google Scholar 

  17. X. Yang and T. Nohira: ACS Sustain. Chem. Eng., 2020, vol. 8, pp. 13784–92.

    Article  CAS  Google Scholar 

  18. Y.X. Zhong and X. Yang: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 3515–23.

    Article  Google Scholar 

  19. B.R. Hubble and J.L. Copeland: J. Chem. Eng. Data, 1970, vol. 15, pp. 441–43.

    Article  CAS  Google Scholar 

  20. B.A. Gruber: U.S. Patent, US29655552A, 1960.

  21. J.F. Melville, A.J. Licini, and Y. Surendranath: ACS Cent. Sci., 2023, vol. 9, pp. 373–80.

    Article  CAS  Google Scholar 

  22. C.F. Callis, J.R. Wazer, and J.S. Metcalf: J. Am. Chem. Soc., 1955, vol. 77, pp. 1471–73.

    Article  CAS  Google Scholar 

  23. Y.X. Zhong, G.T. Liu, and X. Yang: Resour. Conserv. Recycl., 2023, vol. 190, p. 106815.

    Article  CAS  Google Scholar 

  24. Y.X. Zhong, Z. Chen, and X. Yang: J. Electrochem. Soc., 2022, vol. 169, p. 103503.

    Article  CAS  Google Scholar 

  25. J. Songster and A.D. Pelton: J. Phase Equilib., 1993, vol. 14, pp. 240–42.

    Article  Google Scholar 

  26. A.A. Nayeb-Hashemi and J.B. Clark: Bull. Alloy Phase Diagr., 1985, vol. 6, pp. 432–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Research Center for Industries of the Future (RCIF) at Westlake University. The authors thank Dr. Yinjuan Chen, Mr. Ke Wang and Ms. Xin Li from Instrumentation and Service Center for Molecular Sciences at Westlake University for the assistance in the ICP-MS measurement. The authors also appreciate Dr. Xiaohe Miao and Ms. Ying Zhong from Instrumentation and Service Center for Physical Sciences at Westlake University for the assistance in the PXRD measurement.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 585 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Zhong, Y. & Yang, X. Electrolysis of Dissolved Phosphate in Molten CaCl2 Prepares High-Purity White Phosphorus. Metall Mater Trans B 54, 2277–2282 (2023). https://doi.org/10.1007/s11663-023-02839-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02839-9

Navigation