Skip to main content

Advertisement

Log in

Analysis of Electrical Energy Consumption in a Novel Direct Current Submerged Arc Furnace for Ferrochrome Production

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Submerged arc furnace is a smelting device with high efficiency but huge electricity consumption. A novel structure of direct current (DC) submerged arc furnace is investigated for ferrochrome production to save electric energy. For this purpose, a three-dimensional transient multi-physics model is developed to simulate the furnace. Via the model, the effects of two key variables are quantified: electrode insertion depth and operating voltage. A new criterion, i.e., SAF smelting rate \(\left( {\zeta^{ * } } \right)\), is proposed to evaluate the electrical energy consumption. The effects of burden porosity and metallic oxide percentage are clarified with respect to electrical energy consumption. The results show that this DC submerged arc furnace can effectively reduce the electrical energy consumption compared with the AC submerged arc furnace. Increasing the electrode insertion depth and electric voltage, the chromium to iron ratio increases by 72.62 and 39.46 pct. Remarkably, the temperatures of the furnace burden below the anode and cathode are different. With increasing of burden porosity, the ferrochrome production ratio \(\left( {\omega^{ * } } \right)\) decreases by 120.52 pct and \(\zeta^{ * }\) increases by 59.73 pct. Moreover, as the Cr2O3 percentage in the furnace burden increases, \(\omega^{ * }\) and \(\zeta^{ * }\) increase by 9.19 and 20.17 pct, respectively. The results are analyzed in detail to understand the smelting process of DC submerged arc furnace for better furnace design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(\vec{A}\) :

Magnetic potential vector (V s m−1)

\(\vec{B}\) :

Magnetic field (T)

c :

Mass fraction of metallic oxides

\(c_{{{\text{Cr}}_{{2}} {\text{O}}_{{3}} }}\) :

Proportion of Cr2O3 in the furnace burden

\(c_{{{\text{Iron}} {\text{oxides}}}}\) :

Proportion of iron oxides in the furnace burden

C 2 :

Inertial resistance coefficient

D E :

Electrode diameter (m)

D F :

Furnace hearth diameter (m)

D P :

Equivalent diameter of porous media (m)

D S :

Electrode spacing (m)

\(\vec{F}_{L}\) :

Lorentz force (N m−3)

\({\vec{\text{g}}}\) :

Gravity (m s−2)

h :

Heat transfer coefficient (W m−2 K−1)

H :

Electrode insertion depth (m)

H A :

Submerged arc height (m)

H F :

Furnace hearth height (m)

i :

x, y, and z direction

\(\overline{I}_{{{\text{phase}}}}\) :

Phase current (kA)

j :

Serial number of simplified reaction

\(\vec{J}\) :

Electric current density (A m−2)

k :

Reaction rate constant (s−1)

K :

Coefficient to determine whether the reduction reaction occurs

\(\Delta m\) :

Mass of ferrochrome (kg)

M :

Coefficient to determine the calculation domain

n :

Number of transformers

P :

Pressure (Pa)

P Cr :

Percentage of Cr in ferrochrome

P Fe :

Percentage of Fe in ferrochrome

\(\Delta Q\) :

Energy consumption (kVA)

Q Arc :

Submerged arc heat (W m−3)

Q J :

Joule heat (W m−3)

Q Rea :

Reactive heat (W m−3)

R :

Ideal gas constant (8.314 J mol−1 K−1)

SC :

Variation of reactant (kg m−3 s−1)

\(\vec{S}\) :

Momentum source term (kg m−2 s−2)

t :

Physical time (s)

\(\Delta t\) :

Smelting time (s)

T :

Temperature (K)

T Wall :

Temperature of the hearth wall (K)

T max :

Maximum temperature (K)

T Initial :

Initial temperature (K)

\(\vec{u}\) :

Velocity vector (m s−1)

\(U_{\varphi }^{ * }\) :

Operating voltage drop ratio

V :

Furnace volume (m3)

X :

Mass fractional conversion rate of metallic oxides (s1)

\(\alpha\) :

Permeability coefficient

\(\mu_{0}\) :

Magnetic conductivity (H m−1)

μ eff :

Dynamic viscosity (Pa s)

λ :

Equivalent thermal conductivity (W m−1 K−1)

ρ :

Fluid density (kg m−3)

σ :

Electrical conductivity (S m−1)

\(\varphi_{{{\text{Arc}}}}\) :

Arc phase voltage drop (V)

\(\varphi_{{{\text{Burden}}}}\) :

Furnace burden voltage drop (V)

\(\varphi_{{{\text{Ele}}}}\) :

Electrode phase voltage drop (V)

\(\varphi^{\prime}_{{{\text{Phase}}}}\) :

Actual phase voltage drop (V)

\(\varphi_{{{\text{Phase}}}}^{ + }\) :

Phase voltage drop of anode (V)

\(\varphi_{{{\text{Phase}}}}^{ - }\) :

Phase voltage drop of cathode (V)

\(p^{ * }\) :

Burden porosity

\(\beta_{H}^{ * }\) :

Electrode insertion depth ratio

\(\omega\) :

Ferrochrome productivity (kg s−1)

\(\omega_{F}\) :

Standard ferrochrome productivity (kg s−1)

\(\omega^{ * }\) :

Ferrochrome production ratio

\(\zeta\) :

Furnace smelting capacity per unit ferrochrome (kWh t−1)

\(\zeta_{F}\) :

Standard furnace smelting capacity per unit ferrochrome (kWh t−1)

\(\zeta^{ * }\) :

SAF smelting rate

References

  1. Q. Zhang, X. Zhao, H. Lu, T. Ni, and Y. Li: Appl. Energy, 2017, vol. 191, pp. 502–20.

    Article  Google Scholar 

  2. Z. Chen, W. Ma, K. Wei, J. Wu, S. Li, K. Xie, and G. Lv: Appl. Therm. Eng., 2017, vol. 112, pp. 226–36.

    Article  CAS  Google Scholar 

  3. G. Ramakrishna, A. Kadrolkar, and N.G. Srikakulapu: Metall Mater. Trans. B, 2015, vol. 46B(2), pp. 1073–81.

    Article  Google Scholar 

  4. Y. Yu, B. Li, Z. Fang, and C. Wang: J. Clean. Prod., 2021, vol. 285, 124893.

    Article  CAS  Google Scholar 

  5. P. Liu, B. Li, S.C.P. Cheung, and W. Wu: Appl. Therm. Eng., 2016, vol. 109, pp. 542–59.

    Article  CAS  Google Scholar 

  6. Y. Yu, B. Li, C. Wang, Z. Fang, X. Yang, and F. Tsukihashi: Energy, 2019, vol. 179, pp. 792–804.

    Article  CAS  Google Scholar 

  7. I.J. Barker, M.S. Rennie, C.J. Hockaday, P. J. Brereton-Stiles: IFAPA XI, 2007, pp. 685–94.

  8. Y.Y. Sheng, G.A. Irons, and D.G. Tisdale: Metall Mater. Trans. B, 1998, vol. 29B(1), pp. 77–83.

    Article  CAS  Google Scholar 

  9. S. Ranganathan and K.M. Godiwalla: Can. Metall. Quart., 2011, vol. 50, pp. 37–44.

    Article  CAS  Google Scholar 

  10. E. Scheepers, A.T. Adema, Y. Yang, and M.A. Reuter: Miner. Eng., 2006, vol. 19, pp. 1115–25.

    Article  CAS  Google Scholar 

  11. Z. Wang, Y. Fu, N. Wang, and L. Feng: Process. Technol., 2014, vol. 214, pp. 2284–91.

    Article  CAS  Google Scholar 

  12. P.D. Barba, F. Dughiero, M. Dusi, M. Forzan, M.E. Mognaschi, M. Paioli, and E. Sieni: Int. J. Appl. Electrom., 2012, vol. 39, pp. 555–61.

    Google Scholar 

  13. S.A. Halvorsen, H.A.H. Olsen, M. Fromreide: INFACON XIV, 2016, pp. 167–72.

  14. M. Sparta, D. Varagnolo, K. Straaboe, S.A. Halvorsen, E.V. Herland, and H. Martens: Metall. Mater. Trans. B, 2021, vol. 52B(3), pp. 1267–78.

    Article  Google Scholar 

  15. S. Ranganathan and K.M. Godiwalla: Ironmak. Steelmak., 2001, vol. 28, pp. 273–78.

    Article  CAS  Google Scholar 

  16. K.T. Karalis, N. Karkalos, N. Cheimarios, G.S.E. Antipas, A. Xenidis, and A.G. Boudouvis: Appl. Math. Model., 2016, vol. 40, pp. 9052–66.

    Article  Google Scholar 

  17. M. Hafid and M. Lacroix: Appl. Therm. Eng., 2018, vol. 141, pp. 981–89.

    Article  Google Scholar 

  18. Y. Yu, B. Li, C. Yun, F. Qi, and Z. Liu: Metall. Mater. Trans. B, 2021, vol. 52B(6), pp. 3907–919.

    Article  Google Scholar 

  19. Y.Y. Sheng, G.A. Irons, and D.G. Tisdale: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 85–94.

    Article  CAS  Google Scholar 

  20. J.J. Bezuidenhout, J.J. Eksteen, and S.M. Bradshaw: Miner. Eng., 2009, vol. 22, pp. 995–1006.

    Article  CAS  Google Scholar 

  21. M. Kadkhodabeigi, H. Tveit, and J.S. Johansen: Trans. Iron Steel Ins. Jpn., 2011, vol. 51, pp. 193–202.

    Article  CAS  Google Scholar 

  22. X. Zhang, Y. He, S. Tang, F. Wang, and T. Xie: Appl. Therm. Eng., 2020, vol. 165, 114552.

    Article  CAS  Google Scholar 

  23. Y.A. Tesfahunegn, T. Magnusson, M. Tangstad, and G. Saevarsdottir: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 510–18.

    Article  Google Scholar 

  24. I.J. Barker: J. S. Afr. I. Min. Metall, 2011, vol. 111, pp. 691–96.

    CAS  Google Scholar 

  25. H. Lagendijk, B. Xakalashe, T. Ligege, P. Ntikang, K. Bisaka: INFACON XII, 2010, pp. 497–508.

  26. R.T. Jones and M.W. Erwee: Calphad, 2016, vol. 55, pp. 20–25.

    Article  CAS  Google Scholar 

  27. M. Dhainaut: INFACON X, 2004, pp. 605–13.

  28. J. Aubreton, M.F. Elchinger, A. Hacala, and U. Michon: J. Phys. D, 2009, vol. 42, pp. 95206–18.

    Article  Google Scholar 

  29. T. Billoux, Y. Cressault, and A. Gleizes: J. Quant. Spectrosc. Radiat. Transf., 2015, vol. 166, pp. 42–54.

    Article  CAS  Google Scholar 

  30. B. Sourd, J. Aubreton, M.F. Elchinger, M. Labrot, and U. Michon: J. Phys. D, 2009, vol. 39(6), pp. 1105–19.

    Article  Google Scholar 

  31. X. Zhang, Z. Tong, D. Li, and X. Hu: Appl. Therm. Eng., 2021, vol. 185, 115980.

    Article  CAS  Google Scholar 

  32. X. Huang, B. Li, and Z. Liu: Int. J. Heat Mass Transf., 2018, vol. 120, pp. 458–70.

    Article  CAS  Google Scholar 

  33. H.L. Larsen, G. Liping, J.A. Bakken: INFACON VII, 1995, pp. 517–27.

  34. G.A. Saearsdottir, J.A. Bakken: INFACON XII, 2010, pp. 717–28.

  35. M. Capitelli, G. Colonna, C. Gorse, and A.D. Angola: Eur. Phys. J. D, 2000, vol. 11, pp. 279–89.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51934002 and 52171031), Research and Evaluation Facilities for Service Safety of Major Engineering Materials National Major Science and Technology Infrastructure Open Project Fund (Grant No. MSAF-2021-009), and the 111 Project (Grant No. B16009).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baokuan Li or Zhongqiu Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Li, B., Liu, Z. et al. Analysis of Electrical Energy Consumption in a Novel Direct Current Submerged Arc Furnace for Ferrochrome Production. Metall Mater Trans B 54, 2370–2382 (2023). https://doi.org/10.1007/s11663-023-02838-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02838-w

Navigation