Skip to main content
Log in

Research on Depth Dechlorination by Copper Slag Valence Regulation of Synergistic High-Activity Copper in the Ultrasonic Field

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Due to the problems of cuprous chloride resolution and low copper activity in traditional copper slag dechlorination process, depth dechlorination by copper slag valence regulation of synergistic high-activity copper in the ultrasonic field was proposed. According to a series of conditional experiments, the optimal dechlorination parameters under ultrasonic conditions are as follows: the molar ratio of Cu:Zn:Cl is 3:2:1, the chlorine concentration can be reduced from 440 to 15 mg/L at 30 minutes, 50 °C and 30 g/L acidity, and the dechlorination efficiency is 96.6 pct. Compared with conventional and ultrasonic dechlorination, ultrasonic dechlorination can reduce the amount of copper slag by 56.67 pct and zinc powder by 68.1 pct to achieve low consumption and high-efficiency dechlorination. Ultrasonic dechlorination, because of its cavitation, the mechanical effect can accelerate and deepen the reaction process and can achieve a high standard of deep chlorine removal purpose, has a broad prospect in the industrial field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. I. Daigo, S. Osako, Y. Adachi, and Y. Matsuno: Resour. Conserv. Recycl., 2014, vol. 82, pp. 35–40.

    Article  Google Scholar 

  2. X. Zhang, Y. Hu, Z. Xia, X. Zhao, Z. Zhou, and L. Ye: Sep. Purif. Technol., 2022, vol. 283, p. 120221.

    Article  CAS  Google Scholar 

  3. H. Cheng, H.-F. Xiao, Q. Chen, X.-M. Li, W.-M. Qin, B.-S. Chen, D. Xiao, and W.-M. Zhang: J. Membr. Sci., 2018, vol. 563, pp. 142–48.

    Article  CAS  Google Scholar 

  4. H.-F. Xiao, Q. Chen, H. Cheng, X.-M. Li, W.-M. Qin, B.-S. Chen, D. Xiao, and W.-M. Zhang: J. Membr. Sci., 2017, vol. 537, pp. 111–18.

    Article  CAS  Google Scholar 

  5. E. Rudnik: Miner. Eng., 2019, vol. 139, p. 105871.

    Article  CAS  Google Scholar 

  6. K.F. Cao, Z. Chen, Y.H. Wu, Y. Mao, Q. Shi, X.W. Chen, Y. Bai, K. Li, and H.Y. Hu: Water Res., 2022, vol. 215, p. 118271.

    Article  CAS  Google Scholar 

  7. W. Liu, L. Lü, Y. Lu, X. Hu, and B. Liang: Chin. J. Chem. Eng., 2019, vol. 27, pp. 1037–43.

    Article  CAS  Google Scholar 

  8. M. Nicol, C. Akilan, V. Tjandrawan, and J.A. Gonzalez: Hydrometallurgy, 2017, vol. 173, pp. 125–33.

    Article  CAS  Google Scholar 

  9. Z.-Y. Guo, T. Lei, W. Li, H.-L. Luo, S.-H. Ju, J.-H. Peng, and L.-B. Zhang: Chem. Eng. Process., 2015, vol. 92, pp. 67–73.

    Article  CAS  Google Scholar 

  10. R. Saravanan, S. Joicy, V.K. Gupta, V. Narayanan, and A. Stephen: Mater. Sci. Eng. C, 2013, vol. 33, pp. 4725–31.

    Article  CAS  Google Scholar 

  11. Q.-C. Wang, S.-G. Liu, and H.-P. Gao: Water Sci. Eng., 2019, vol. 12, pp. 55–61.

    Article  Google Scholar 

  12. R. Saravanan, V.K. Gupta, E. Mosquera, and F. Gracia: J. Mol. Liq., 2014, vol. 198, pp. 409–12.

    Article  CAS  Google Scholar 

  13. M. Ghaedi, S. Hajjati, Z. Mahmudi, I. Tyagi, and S. Agarwal: Chem. Eng. J., 2015, vol. 268, pp. 28–37.

    Article  CAS  Google Scholar 

  14. W. Liu, Z. Xiong, H. Liu, Q. Zhang, and G. Liu: Agric. Ecosyst. Environ., 2016, vol. 216, pp. 147–54.

    Article  CAS  Google Scholar 

  15. T.A. Saleh and V.K. Gupta: Sep. Purif. Technol., 2012, vol. 89, pp. 245–51.

    Article  CAS  Google Scholar 

  16. R. Han, X. Fang, Y. Song, L. Wang, Y. Lu, H. Ma, H. Xiao, L. Shao: Chem. Eng. Process.-Process Intensif., 2022, vol. 173.

  17. X. Cao, X. Li, W. Yu, X. Liu, and X. He: Mater. Sci. Eng. B, 2009, vol. 157, pp. 36–39.

    Article  CAS  Google Scholar 

  18. I. Ali, Z.A. Alothman, and A. Alwarthan: J. Mol. Liq., 2017, vol. 241, pp. 123–29.

    Article  CAS  Google Scholar 

  19. R. Saravanan, N. Karthikeyan, V.K. Gupta, E. Thirumal, P. Thangadurai, and V. Narayanan: Mater. Sci. Eng. C, 2013, vol. 33, pp. 2235–44.

    Article  CAS  Google Scholar 

  20. T.A. Khan, M. Nazir, I. Ali, and A. Kumar: Arab. J. Chem., 2017, vol. 10, pp. S2388-2398.

    Article  CAS  Google Scholar 

  21. X. Wu, Z. Liu, and X. Liu: Hydrometallurgy, 2013, vol. 134–135, pp. 62–65.

    Article  Google Scholar 

  22. N. Mohammadi, H. Khani, V.K. Gupta, E. Amereh, and S. Agarwal: J. Colloid Interface Sci., 2011, vol. 362, pp. 457–62.

    Article  CAS  Google Scholar 

  23. R. Jain and M. Shrivastava: J. Hazard. Mater., 2008, vol. 152, pp. 216–20.

    Article  CAS  Google Scholar 

  24. W. Liu, R. Zhang, Z. Liu, and C. Li: Hydrometallurgy, 2016, vol. 160, pp. 147–51.

    Article  CAS  Google Scholar 

  25. N.O. Rahmati, M. Pourafshari Chenar, and H. Azizi Namaghi: Sep. Purif. Technol., 2017, vol. 181, pp. 213–22.

    Article  CAS  Google Scholar 

  26. V.K. Gupta, I. Ali, T.A. Saleh, M.N. Siddiqui, and S. Agarwal: Environ. Sci. Pollut. Res. Int., 2013, vol. 20, pp. 1261–68.

    Article  CAS  Google Scholar 

  27. V.K. Gupta and T.A. Saleh: Environ. Sci. Pollut. Res., 2013, vol. 20, pp. 2828–43.

    Article  CAS  Google Scholar 

  28. M. Ahmaruzzaman and V.K. Gupta: Ind. Eng. Chem. Res., 2011, vol. 50, pp. 13589–13613.

    Article  CAS  Google Scholar 

  29. X. Wang, Y. Du, H. Yang, S. Tian, Q. Ge, S. Huang, and M. Wang: J. Ind. Eng. Chem., 2021, vol. 93, pp. 170–75.

    Article  CAS  Google Scholar 

  30. Y. Li, Z. Yang, K. Yang, J. Wei, Z. Li, C. Ma, X. Yang, T. Wang, G. Zeng, G. Yu, Z. Yu, and C. Zhang: Sci. Total Environ., 2022, vol. 821, p. 153174.

    Article  CAS  Google Scholar 

  31. X. Hu, F. Zhu, L. Kong, and X. Peng: J. Hazard. Mater., 2021, vol. 410, p. 124540.

    Article  CAS  Google Scholar 

  32. D. Sun, Z. Zhou, Q. Ming, J. Guo, X. Ye, Y. Yuan, M. Zhang, X. Zhao, L.-M. Jiang, and Q. Xia: Desalination, 2021, vol. 509, p. 115070.

    Article  CAS  Google Scholar 

  33. W. Dou, X. Peng, L. Kong, and X. Hu: Sci. Total Environ., 2022, vol. 824, p. 153909.

    Article  CAS  Google Scholar 

  34. L. Zhang, P. Lv, Y. He, S. Li, J. Peng, L. Zhang, K. Chen, and S. Yin: J. Hazard Mater., 2021, vol. 403, p. 123545.

    Article  CAS  Google Scholar 

  35. Y. Zhang, S. Yin, H. Li, J. Liu, S. Li, L. Zhang: J. Water Process Eng., 2022, vol. 45.

  36. H.-X. Li, X.-L. Huai, J. Cai, and S.-Q. Liang: J. Therm. Sci., 2009, vol. 18, pp. 65–73.

    Article  Google Scholar 

  37. H. Liu, M. Ye, Z. Ren, E. Lichtfouse, and Z. Chen: J. Environ. Chem. Eng., 2022, vol. 10, p. 107809.

    Article  CAS  Google Scholar 

  38. K. Brunelli and M. Dabalà: Metall. Mater., 2015, vol. 22, pp. 353–62.

    CAS  Google Scholar 

  39. R.L. Zhang, X.F. Zhang, S.Z. Tang, and A.D. Huang: Ultrason. Sonochem., 2015, vol. 27, pp. 187–91.

    Article  CAS  Google Scholar 

  40. M. Hurşit, O. Laçin, and H. Saraç: J. Taiwan Inst. Chem. Eng., 2009, vol. 40, pp. 6–12.

    Article  Google Scholar 

  41. H. Xie, X. Xiao, Z. Guo, and S. Li: Chem. Eng. Process.- Process Intensif., 2022, vol. 176, p. 108941.

    Article  CAS  Google Scholar 

  42. L. Di, S. Zhang, C. Shi, Z. Sun, Q. Ouyang, F. Zhi, and Q. Yang: Chemosphere, 2022, vol. 302, p. 134924.

    Article  CAS  Google Scholar 

  43. X. Xu, X. Yao, K. Jiang, Y. Zhou, W. Lu, W. Jiang, and X. Wang: J. Clean. Prod., 2022, vol. 359, p. 132070.

    Article  Google Scholar 

  44. G. Harvey, A. Gachagan, and T. Mutasa: IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2014, vol. 61, pp. 481–95.

    Article  Google Scholar 

  45. D. Zhao, Y. Zheng, M. Li, S.A. Baig, D. Wu, and X. Xu: Ultrason. Sonochem., 2014, vol. 21, pp. 1714–21.

    Article  CAS  Google Scholar 

  46. D. Zhao, M. Li, D. Zhang, and S.A. Baig: Ultrason. Sonochem., 2013, vol. 20, pp. 864–71.

    Article  CAS  Google Scholar 

  47. J.-H. Bae, S.-B. Do, S.-H. Cho, K.-M. Lee, S.-E. Lee, T.-O. Kim: Ultrason. Sonochem., 2022, vol. 83.

  48. Y. Huang, S. Ding, L. Li, Q. Liao, W. Chu, and H. Li: Water Res., 2021, vol. 201, p. 117334.

    Article  CAS  Google Scholar 

  49. Z. Guo, C. Gu, Z. Zheng, R. Feng, F. Jiang, G. Gao, and Y. Zheng: Ultrason. Sonochem., 2006, vol. 13, pp. 487–92.

    Article  CAS  Google Scholar 

  50. L. Zhang, C. Zhou, B. Wang, A.E.A. Yagoub, H. Ma, X. Zhang, and M. Wu: Ultrason. Sonochem., 2017, vol. 37, pp. 106–13.

    Article  Google Scholar 

  51. T. Thanh Nguyen, Y. Asakura, S. Koda, and K. Yasuda: Ultrason. Sonochem., 2017, vol. 39, pp. 301–06.

    Article  Google Scholar 

  52. T. Nazarenus, K. Schlesier, F. Lebeda, M. Retsch, and R. Moos: Mater. Lett., 2022, vol. 322, p. 132461.

    Article  CAS  Google Scholar 

  53. S.R. Mousavi, S. Estaji, H. Kiaei, M. Mansourian-Tabaei, S. Nouranian, S.H. Jafari, H. Ruckdäschel, M. Arjmand, and H.A. Khonakdar: Polym. Test., 2022, vol. 112, p. 107645.

    Article  CAS  Google Scholar 

  54. A. Mohammadpour-Haratbar, Y. Zare, and K.Y. Rhee: J. Market. Res., 2022, vol. 18, pp. 4894–4902.

    CAS  Google Scholar 

  55. J. Fal, J. Sobczak, R. Stagraczyński, P. Estellé, and G. Żyła: Powder Technol., 2022, vol. 404, p. 117423.

    Article  CAS  Google Scholar 

  56. I. Khurshid and I. Afgan: J. Pet. Sci. Eng., 2022, vol. 215, p. 110627.

    Article  CAS  Google Scholar 

  57. Z. Xia, X. Zhang, X. Huang, S. Yang, Y. Chen, and L. Ye: Hydrometallurgy, 2020, vol. 197, p. 105475.

    Article  CAS  Google Scholar 

  58. Z. Zhu, W. Zhang, Y. Pranolo, and C.Y. Cheng: Hydrometallurgy, 2012, vol. 127–128, pp. 1–7.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSFC Regional Fund (No. 52264050), Basic Research Project of Science and Technology Plan of Yunnan Provincial Department of Science and Technology (No. 202201AS070031). The authors are grateful for The Kunming Key Laboratory of Special Metallurgy, Kunming Academician Workstation of Advanced Preparation for Super hard Materials Field, Kunming Academician Workstation of Metallurgical process Intensification, and Yunnan Chihong Zinc Germanium Co., Ltd. Non-ferrous Metal Electrodeposition Technology Provincial Innovation Team.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Li or Junchang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Qu, H., Wang, D. et al. Research on Depth Dechlorination by Copper Slag Valence Regulation of Synergistic High-Activity Copper in the Ultrasonic Field. Metall Mater Trans B 54, 2320–2331 (2023). https://doi.org/10.1007/s11663-023-02824-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02824-2

Navigation