Skip to main content
Log in

Modeling and Characterization of Surface Deformation and Current Distribution of Molten Droplets Under Electromagnetic Levitation

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Electromagnetic levitation technology is used in the preparation of new materials and the study of metallurgical reactions. However, the surface deformation of droplets in the levitation process can introduce errors in the experimental measurements. The modeling and characterization of molten droplet surface deformation and current distribution under electromagnetic levitation are studied in this paper. The results show that under the influence of surface tension or other factors such as electromagnetic force, molten droplets will oscillate and deform, before finally attaining a relatively stable configuration. Under the conditions of the present work, the relationship between surface current density and applied current is y = 142.65 x2 + 35,998.53 x + 1.14 × 108 and the deformation ratio of the droplet (longitudinal diameter/transverse diameter) is least when the applied current is 470 A. When the current is less than 470 A, the longitudinal diameter of the droplet is greater than the transverse diameter. However, when the current is greater than 470 A, the transverse diameter is greater than the longitudinal diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

B:

Magnetic flux intensity [T]

Bz :

Axial magnetic field intensity [T]

D:

Electric flux density vector [C/m2]

ρ:

Density [Kg/m3]

E:

Electric field vector [V/m]

J:

Electric density vector [A/m2]

H:

Magnetic intensity [A/m]

T:

Temperature [K]

\({C}_{p}\) :

Specific heat [J/kg K]

σ:

Electric conductivity [S/m]

Fac :

Electromagnetic force [N/m3]

Fz :

Component of electromagnetic force in Z direction [N]

Qv :

Power absorption [W/m3]

g:

Gravity acceleration [m/s2]

μ:

Dynamic viscosity [Pa s]

γ:

Surface tension coefficient [N/K]

Z:

Position in Z direction [mm]

P:

Pressure [Pa]

ρ1 :

Charge density [C/m3]

I:

Current [A]

χ:

Thermal conductivity [W/m K]

t:

Time [s]

r:

Droplet radius [m]

v:

Motion velocity in Z direction [m/s]

n:

Unit normal vector [-]

\( \xi \) :

Average curvature [1/m]

P:

Pressure [Pa]

τ:

Temperature coefficient of surface tension [N/m K]

f:

Frequency [Hz]

ε :

The dissipation rate of the turbulent kinetic energy [–]

K :

The turbulence kinetic energy per unit mass [J]

∀:

Surface gradient of surface tension [–]

p:

Positioning

* :

Conjugate complex

References

  1. L. Gao, Z. Shi, D.H. Li, G.F. Zhang, Y.D. Yang, A. McLean, and K. Chattopadhyay: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 537–47.

    Article  Google Scholar 

  2. P. Yan, G.F. Zhang, Y.D. Yang, and A. McLean: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 247–57.

    Article  Google Scholar 

  3. J. Szekely, E. Schwartz, and R. Hyers: JOM, 1995, vol. 47, pp. 50–3.

    Article  Google Scholar 

  4. R.K. Wunderlich, M. Mohr, Y. Dong, U. Hecht, D.M. Matson, R. Hyers, G. Bracker, J. Lee, S. Schneider, X. Xiao, and H. Fecht: Int. J. Mater. Res., 2021, vol. 112, pp. 770–81.

    Article  CAS  Google Scholar 

  5. D.M. Matson, X. Xiao, J.E. Rodriguez, J. Lee, R.W. Hyers, O. Shuleahova, I. Kaban, S. Schneider, C. Karrasch, S. Burggraff, R. Wunderlich, and H.J. Fecht: JOM, 2017, vol. 69, pp. 1311–8.

    Article  CAS  Google Scholar 

  6. D.M. Matson, X. Xiao, J. Rodriguez, and R.K. Wunderlich: Int. J. Microgravity S, 2016, vol. 3, p. 330206.

    Google Scholar 

  7. M. Watanabe, J. Takano, M. Adachi, M. Uchikoshi, and H. Fukuyama: J. Chem. Thermodyn., 2018, vol. 121, pp. 145–52.

    Article  CAS  Google Scholar 

  8. K. Zhou, H.P. Wang, and B. Wei: Chem. Phys. Lett., 2012, vol. 521, pp. 52–4.

    Article  CAS  Google Scholar 

  9. G. Lohöfer, S. Schneider, and I. Egry: Int. J. Thermophys., 2001, vol. 22, pp. 593–604. https://doi.org/10.1023/A:1010701821392.

    Article  Google Scholar 

  10. J. Lee, D.M. Maston, S. Binder, M. Kolbe, D. Herlach, and R.W. Hyers: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1018–24.

    Article  Google Scholar 

  11. X. Cai, H.P. Wang, and B. Wei: Int. J. Heat Mass Transf., 2020, vol. 151, p. 119386.

    Article  Google Scholar 

  12. L. Gao, Z. Shi, Y.D. Yang, D.H. Li, G.F. Zhang, A. McLean, and K. Chattopadhyay: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1985–94.

    Article  Google Scholar 

  13. P. Wu, Y.D. Yang, M. Barati, and A. McLean: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1974–78.

    Article  Google Scholar 

  14. K. Le, Y.D. Yang, M. Barati, and A. McLean: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1658–64.

    Article  Google Scholar 

  15. Q. Jiang, G.F. Zhang, Y.D. Yang, and A. McLean: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 305–13.

    Article  Google Scholar 

  16. Q. Jiang, G.F. Zhang, Y.D. Yang, A. McLean, and L. Gao: Metals, 2021, vol. 11, p. 1460.

    Article  CAS  Google Scholar 

  17. P. Yan, G.F. Zhang, Y.D. Yang, and A. McLean: Int J Heat Mass Transf., 2020, vol. 163, p. 120489.

    Article  CAS  Google Scholar 

  18. L. Feng and W.Y. Shi: Int. J. Heat Mass Transf., 2018, vol. 122, pp. 69–77.

    Article  CAS  Google Scholar 

  19. K.A. Baldwin, S.L. Butler, and R.J.A. Hill: Sci. Rep-UK, 2015, vol. 5, p. 7660.

    Article  CAS  Google Scholar 

  20. S. Krishnan, G.P. Hansen, R.H. Hauge, and J.L. Margrave: Metall. Mater. Trans. B, 1998, vol. 19B, pp. 1939–43.

    Google Scholar 

  21. P. Chapelle, A. Jardy, D. Ablitzer, Y.M. Pomarin, and G.M. Grigorenko: J. Mater. Sci., 2008, vol. 43, pp. 3001–08.

    Article  CAS  Google Scholar 

  22. V. Bojarevics and K. Pericleous: ISIJ Int., 2003, vol. 43, pp. 890–98.

    Article  CAS  Google Scholar 

  23. H. Fujii, T. Matsumoto, and K. Nogi: Acta Mater., 2000, vol. 48, pp. 2933–39.

    Article  CAS  Google Scholar 

  24. L. Feng and W.Y. Shi: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1895–901.

    Article  Google Scholar 

  25. V. Bojarevics, A. Roy, and K.A. Pericleous: Magnetohydrodynamics, 2010, vol. 46, pp. 317–29.

    Article  Google Scholar 

  26. V. Bojarevics and K. Pericleous: Fluid Mechanics and Its Applications, Springer, Dordrecht, 2007, pp. 357–74.

    Google Scholar 

  27. V. Bojarevics, A. Kao, and K. Pericleous: Solidification of Containerless Undercooled Melts, 1st ed. Wiley-VCH, New Jersey, 2012, pp. 321–48.

    Book  Google Scholar 

  28. J. Brillo and I. Egry: Int. J. Thermophys, 2013, vol. 24, pp. 1155–69.

    Article  Google Scholar 

  29. L. Gao, Z. Shi, D.H. Li, A. McLean, and K. Chattopadhyay: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1905–915.

    Article  Google Scholar 

  30. F. Lin and W.Y. Shi: Int. Commun. Heat Mass, 2021, vol. 130, p. 105766.

    Google Scholar 

  31. S. Berry, R.W. Hyers, B. Abedian, and L.M. Racz: Metall. Mater. Trans. B, 2000, vol. 31, pp. 171–78.

    Article  Google Scholar 

  32. S.R. Berry, R.W. Hyers, L.M. Racz, and B. Abedian: Int. J. Thermophys., 2005, vol. 26, pp. 1565–581.

    Article  CAS  Google Scholar 

  33. J. Donea, A. Huerta, and JPh. Ponthot: A: Rodríguez-Ferran, Arbitrary Lagrangian Eulerian methods, Wiley & Sons, New York, 2004, pp. 413–34.

    Google Scholar 

  34. T.S. Wang and W.Y. Shi: Int. J. Heat Mass Trans., 2019, vol. 131, pp. 1270–278.

    Article  CAS  Google Scholar 

  35. Y. Ido, H. Nakagawa, T. Kunitomo, and H. Kawai: Int. J. Appl. Electrom., 2008, vol. 28, pp. 33–9.

    Google Scholar 

  36. H.L. Li, S.H. Wang, H.Y. He, Y.P. Huangfu, and J.G. Zhu: IEEE Trans. Magn., 2016, vol. 52, pp. 1–4.

    Google Scholar 

  37. S. Spitans, E. Baake, B. Nacke, and A. Jakovičs: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 522–36.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China [grant number 52074140] and the Analysis and Testing Foundation of Kunming University of Science and Technology [grant number 2020P20193102006].

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guifang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Q., Zhang, G., Qi, X. et al. Modeling and Characterization of Surface Deformation and Current Distribution of Molten Droplets Under Electromagnetic Levitation. Metall Mater Trans B 54, 1798–1806 (2023). https://doi.org/10.1007/s11663-023-02794-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02794-5

Navigation