Skip to main content
Log in

Characterisation of Secondary Copper Smelting Slag With Transmission Electron Microscopy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The utilization of slag from metallurgical processes supports resource conservation, which highlights the importance of understanding its properties. Characterization and analysis techniques are key to link chemical composition and phases to properties and process parameters. In this study the feasibility of transmission electron microscopy for phase analysis in nanoscale is tested. The same phases as in scanning electron microscopy investigations are observed, including copper droplets during their formation. Additionally phases with crystal structure are identified, which lattice spacings fit to spinel structures (Al, Mg, Fe) (Zn, Al, Cr, Fe)2O4 with spacegroup “\({\text{F}}\overline{d}{\text{3m}}\)”. A high-resolution image of atom columns in industrial slag samples is provided, showing the possibility of transmission electron microscopy for analysis of crystalline phases in slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Potysz, E.D. van Hullebusch, J. Kierczak, M. Grybos, P.N. Lens, and G. Guibaud: Crit. Rev. Environ. Sci., 2015, vol. 45, pp. 2424–88.

    Article  CAS  Google Scholar 

  2. S.A. Degterov and A.D. Pelton: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 661–69.

    Article  CAS  Google Scholar 

  3. D. M. Flanagan (2021), https://pubs.usgs.gov/periodicals/mcs2021/mcs2021-copper.pdf. Accessed 3 July 2022

  4. M. Garside (2021), https://www.statista.com/statistics/254917/total-global-copper-production-since-2006/. Accessed 3 July 2022

  5. B. Gorai, R.K. Jana, and Premchand: Resour. Conserv. Recycl., 2003, vol. 39, pp. 299–313.

    Article  Google Scholar 

  6. K. Lacasse: Iron Silicate: A Sustainable and Safe By-Product (2021), https://copperalliance.org/wp-content/uploads/2021/11/ECI-position-paper-on-iron-silicate-for-by-product-survey.pdf. Accessed 3 July 2022

  7. European Parliament and the Council: Regulation (EU) No 305/2011 (2011), https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:088:0005:0043:EN:PDF. Accessed 30 November 2022

  8. Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit: Verordnung zur Einführung einer Ersatzbaustoffverordnung (2021), https://www.bgbl.de/xaver/bgbl/text.xav?SID=&tf=xaver.component.Text_0&tocf=&qmf=&hlf=xaver.component.Hitlist_0&bk=bgbl&start=%2F%2F*%5B%40node_id%3D%27940375%27%5D&skin=pdf&tlevel=-2&nohist=1&sinst=8D46A8D8. Accessed 30 November 2022

  9. A.A. Bunaciu, E.G. Udriştioiu, and H.Y. Aboul-Enein: Crit. Rev. Anal. Chem., 2015, vol. 45, pp. 289–99.

    Article  CAS  Google Scholar 

  10. A. Ali, Y.W. Chiang, and R.M. Santos: Minerals, 2022, vol. 12, p. 205.

    Article  CAS  Google Scholar 

  11. N. M. Piatak, V. Ettler, and D. Hoppe: Metallurgical Slags, Ed. by N. M. Piatak and V. Ettler, Royal Society of Chemistry, Cambridge, 2021, pp. 59–124.

  12. J. Chen, A. Fallah-Mehrjardi, A. Specht, and H. C. St. O’Neill: JOM, 2022, pp. 185–94.

  13. D.B. Williams and C.B. Carter: Transmission Electron Microscopy: A Textbook for Materials Science, 2nd ed. Springer, New York, 2009.

    Book  Google Scholar 

  14. N. Alharbi, B. Varela, and R. Hailstone: Mater. Charact., 2020, vol. 168, 110504.

    Article  CAS  Google Scholar 

  15. Y. Kim and K. Lee: Proceedings of the 2015 International Conference on Sustainable Energy and Environmental Engineering, Atlantis Press, Paris, France, 2015–2015.

  16. A.W. Bydalek: Microsc. Anal., 2002, vol. 90, pp. 25–27.

    Google Scholar 

  17. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M.-A. van Ende: Calphad, 2016, vol. 54, pp. 35–53.

    Article  CAS  Google Scholar 

  18. Pyrometallurgy Innovation Centre, PYROSEARCH Databases for FactSage Thermochemical Software (Brisbane, 2021).

  19. A. Vaitkus, A. Merkys, and S. Gražulis: J. Appl. Crystallogr., 2021, vol. 54, pp. 661–72.

    Article  CAS  Google Scholar 

  20. M. Quirós, S. Gražulis, S. Girdzijauskaitė, A. Merkys, and A. Vaitkus: J. Cheminform., 2018, vol. 10, p. 23.

    Article  Google Scholar 

  21. A. Merkys, A. Vaitkus, J. Butkus, M. Okulič-Kazarinas, V. Kairys, and S. Gražulis: J. Appl. Crystallogr., 2016, vol. 49, pp. 292–301.

    Article  CAS  Google Scholar 

  22. S. Gražulis, A. Merkys, A. Vaitkus, and M. Okulič-Kazarinas: J. Appl. Crystallogr., 2015, vol. 48, pp. 85–91.

    Article  Google Scholar 

  23. S. Gražulis, A. Daškevič, A. Merkys, D. Chateigner, L. Lutterotti, M. Quirós, N.R. Serebryanaya, P. Moeck, R.T. Downs, and A. Le Bail: Nucleic Acids Res., 2012, vol. 40, pp. D420–427.

    Article  Google Scholar 

  24. S. Gražulis, D. Chateigner, R.T. Downs, A.F.T. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, and A. Le Bail: J. Appl. Crystallogr., 2009, vol. 42, pp. 726–29.

    Article  Google Scholar 

  25. R.T. Downs and M. Hall-Wallace: Am. Mineral., 2003, vol. 88, pp. 247–50.

    Article  CAS  Google Scholar 

  26. International Centre for Diffraction Data, 2022.

  27. J. W. Edington: Monographs in Practical Electron Microscopy in Materials Science, England, 1974.

  28. S. Wang, X. Liu, Y. Fei, Q. He, and H. Wang: Phys. Chem. Miner., 2012, vol. 39, pp. 189–98.

    Article  Google Scholar 

  29. L. Passerini: Gazz. Chim. Ital., 1930, vol. 60, pp. 389–99.

    CAS  Google Scholar 

  30. N.G. Zorina and S.S. Kvitka: Soviet Phys. Crystallogr., 1969, vol. 13, pp. 599–600.

    Google Scholar 

  31. H.C. St. O’Neill and W.A. Dollase: Phys. Chem. Minerals, 1994, vol. 20, pp. 541–55.

    Article  Google Scholar 

  32. R. Wyckoff: The Structure of Crystals, Interscience Publishers Inc, Geneva, 1951.

    Google Scholar 

  33. L.W. Finger, R.M. Hazen, and T. Yagi: Am. Mineral., 1979, vol. 64, pp. 1001–09.

    Google Scholar 

  34. R.J. Harrison and S.A.T. Redfern: Am. Miner., 1998, vol. 83, pp. 1092–99.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by Aurubis AG and Montanuniversität Leoben, Chair of Nonferrous Metallurgy. Financial support from the Austrian Research Promotion Agency (FFG) in the project 3DnanoAnalytics (Grant No. FFG-No. 858040) is also gratefully acknowledged.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cora Kleeberg.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleeberg, C., Cattini, L., Kremmer, T. et al. Characterisation of Secondary Copper Smelting Slag With Transmission Electron Microscopy. Metall Mater Trans B 54, 1593–1603 (2023). https://doi.org/10.1007/s11663-023-02788-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02788-3

Navigation