Skip to main content
Log in

Variation in Multiphase Flow Characteristics by Single-Flow Post-combustion Oxygen Lance Blowing in BOF Steelmaking

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In converter steelmaking, the impact of a high-speed gas jet on the melt pool is a complex process in which the shape of the impacted cavity has an important influence on the smelting. Therefore, this paper establishes a full-size model of the traditional oxygen lance (TL) and post-combustion oxygen lance (PCL) in a 250 t converter to analyze the fluctuation of the slag–metal interface, the shape of the impact crater, and the change of the fluid flow in the melt pool. The study shows that the melt pool surface maintains a stable vibration state over time. The impact diameter and impact depth of the PCL are 16 and 20 pct greater than those of the TL. A model for predicting the depth of the PCL impact crater is also proposed, and the numerical simulation results agree well with the model results. The industrial tests have shown that, compared to the TL, the PCL increases the converter temperature by 27.3 °C, which increases the oxygen supply intensity with maintaining the regular blowing and shortens the oxygen supply time by 78 seconds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. K.S. Coley: J. Min. Metall. Sect. B, 2013, vol. 49, pp. 191–99.

    Article  CAS  Google Scholar 

  2. A. Nordquist, N. Kumbhat, L. Jonsson, and P. Jonson: Steel Res. Int., 2010, vol. 77, pp. 82–90.

    Article  Google Scholar 

  3. M. Lv, R. Zhu, Y.G. Guo, and Y.W. Wang: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1560–71.

    Article  Google Scholar 

  4. J.K. Sun, J.S. Zhang, W.H. Lin, L.L. Cao, X.M. Feng, and Q. Liu: Steel Res. Int., 2021, vol. 92, p. 2100179.

    Article  CAS  Google Scholar 

  5. Q. Li, M.M. Li, S.B. Kuang, and Z.S. Zou: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1494–1509.

    Article  Google Scholar 

  6. M. Ersson, L. Hoglund, A. Tilliander, L. Jonsson, and P. Jonsson: ISIJ Int., 2008, vol. 48, pp. 147–53.

    Article  CAS  Google Scholar 

  7. H.Y. Hwang and G.A. Irons: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 575–91.

    Article  Google Scholar 

  8. J. Solórzano-López, R. Zenit, and M.A. Ramirez-Argaez: Appl. Math. Model., 2011, vol. 35, pp. 4991–5005.

    Article  Google Scholar 

  9. X.B. Zhou, M. Ersson, L.C. Zhong, J.K. Yu, and P. Jonsson: Steel Res. Int., 2014, vol. 85, pp. 273–81.

    Article  CAS  Google Scholar 

  10. H. Wang, R. Zhu, Y. L. Gu, C.J. Wang: Can. Metall. Q., vol. 2014, 53, pp. 367–80.

  11. L.L. Cao, Q. Liu, Z. Wang, and N. Li: Ironmak. Steelmak., 2018, vol. 45, pp. 239–48.

    Article  CAS  Google Scholar 

  12. S. Sato, M. Ando, J. Okada, U. Yoshiaki, and I. Manabu: ISIJ Int., 2020, vol. 60, pp. 1675–83.

    Article  CAS  Google Scholar 

  13. G.Q. Liu, K. Liu, and P. Han: Ironmak. Steelmak., 2021, vol. 48, pp. 25–32.

    Article  CAS  Google Scholar 

  14. M. Lv, H. Li, T.C. Lin, K. Xie, and K. Xue: Steel Res. Int., 2021, vol. 92, p. 2100103.

    Article  CAS  Google Scholar 

  15. M. Lv, H. Li, X.D. Xing, T.C. Lin, S.Y. Hu, and K. Xie: Steel Res. Int., 2022, vol. 93, p. 2100409.

    Article  CAS  Google Scholar 

  16. M.M. Li, L. Shao, Q. Li, and Z.S. Zou: Metall. Mater. Trans. B, 2021, vol. 52, pp. 2026–37.

    Article  CAS  Google Scholar 

  17. F. Liu, D. Sun, R. Zhu, F. Zhao, and J. Ke: Ironmak. Steelmak., 2017, vol. 44, pp. 640–48.

    Article  CAS  Google Scholar 

  18. L.Z. Yang, Z.S. Yang, G.S. Wei, Y.F. Guo, F. Chen, and F.Q. Zheng: ISIJ Int., 2019, vol. 59, pp. 2272–82.

    Article  CAS  Google Scholar 

  19. C. Feng, R. Zhu, K. Dong, G.S. Wei, W.H. Wu, B.C. Han, J.F. Dong, and J.J. Jiang: Powder Technol., 2021, vol. 388, pp. 537–53.

    Article  CAS  Google Scholar 

  20. Z.F. Yuan, Y. Xiao, Z.X. Lu, J.N. Huang, Y.F. Pan, and E.X. Ma: J. Iron Steel Res. Int., 2007, vol. 14, pp. 1–5.

    Google Scholar 

  21. G.Q. Liu, K. Liu, P. Han, and Y.S. Chen: AIP Adv., 2019, vol. 9, p. 075202.

    Article  Google Scholar 

  22. G.Q. Liu, K. Liu, and P. Han: Ironmak. Steelmak., 2021, vol. 48, pp. 437–46.

    Article  CAS  Google Scholar 

  23. H.B. Jia, P. Han, K. Liu, Y.X. Li, K.J. Ba, and L.H. Feng: AIP Adv., 2021, vol. 11, p. 085330.

    Article  CAS  Google Scholar 

  24. C. Feng, T. Xia, G.S. Wei, J.F. Dong, R. Zhu, and K. Dong: Ironmak. Steelmak., 2022, vol. 49, pp. 109–21.

    Article  CAS  Google Scholar 

  25. M. Lv and R. Zhu: Metall. Res. Technol., 2019, vol. 116, p. 502.

    Article  CAS  Google Scholar 

  26. L.H. Feng, K. Liu, H.K. Liang, and G.L. Liu: Metalurgija, 2018, vol. 57, pp. 149–52.

    Google Scholar 

  27. L.H. Feng, X.B. Kang, H.K. Liang, G.L. Liu, and C. Sun: Metalurgija, 2018, vol. 57, pp. 223–25.

    Google Scholar 

  28. F.H. Liu, D.B. Sun, R. Zhu, and S.Y. Hu: Can. Metall. Q., 2019, vol. 58, pp. 96–105.

    Article  CAS  Google Scholar 

  29. F. Zhao, R. Zhu, and W.R. Wang: Int. J. Miner. Metall. Mater., 2020, vol. 27, pp. 173–80.

    Article  CAS  Google Scholar 

  30. E.X. Ma, Z.P. Cai, R.J. Zhao, and Y.Z. Zhang: J. Iron Steel Res. Int., 1989, vol. 1, pp. 1–7.

    Google Scholar 

  31. K. Ling, C.G. Li, Q.Z. Cui, and Z.J. Sun: Iron and steel, 1987, vol. 22, pp. 16–20.

    Google Scholar 

  32. P.Y. Dong, S.G. Zhang, and M.Y. Zhu: Steel Res. Int., 2021, vol. 92, p. 2100203.

    Article  CAS  Google Scholar 

  33. C. Liu, S.G. Zheng, and M.Y. Zhu: Steel Res. Int., 2022, vol. 93, p. 2100677.

    Article  CAS  Google Scholar 

  34. F. L. Wu, F. S. Cai: Metallurgical Industry Press, Beijing 1982.

  35. M. Y. Zhu: Metallurgical Industry Press, Beijing 2011.

  36. D.I. Pullin: J. Fluid Mech., 1982, vol. 119, pp. 507–32.

    Article  Google Scholar 

Download references

Acknowledgments

The present study was supported by the National Natural Science Foundation of China (Nos. 52174310, 51974079). The authors greatly appreciate their support.

Conflict of interest

No potential conflict of interest was reported by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Guo Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zheng, SG. & Zhu, MY. Variation in Multiphase Flow Characteristics by Single-Flow Post-combustion Oxygen Lance Blowing in BOF Steelmaking. Metall Mater Trans B 54, 1245–1261 (2023). https://doi.org/10.1007/s11663-023-02757-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02757-w

Navigation