Skip to main content
Log in

Predicting Temperature of Molten Steel in LF-Refining Process Using IF–ZCA–DNN Model

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Controlling the temperature of molten steel in ladle furnace (LF)-refining process is one of the main tasks to ensure that the steelmaking-continuous casting process runs smoothly. In this work, a hybrid model based on metallurgical mechanism, isolation forest (IF), zero-phase component analysis whitening (ZCA whitening), and a deep neural network (DNN) was established to predict the temperature of molten steel in LF-refining process. The metallurgical mechanism, Pearson correlation coefficient, ZCA whitening, IF, and t-distributed stochastic neighbor embedding (t-SNE) were used to obtain the main factors affecting the temperature, analyze the correlation between two random variables, eliminate the correlation among the input variables, reduce the abnormal data of the original datasets, and visualize high-dimensional data, respectively. The single-machine-learning (ML) models, ZCA–ML models, and IF–ZCA–DNN model were comparatively examined by evaluating the coefficient of determination (R2), root-mean-square error (RMSE), mean absolute error (MAE), and hit ratio. The optimal structure of IF–ZCA–DNN model had 4 hidden layers, 45 hidden layer neurons, a learning rate of 0.03, regularization coefficient of 2 × 10−4, batch size of 128, leaky-rectified linear unit activation function, and an optimization algorithm of mini-batch stochastic gradient descent with momentum. The R2, RMSE, and MAE of the IF–ZCA–DNN model were 0.916, 2.827, and 2.048, respectively. Meanwhile, the prediction hit ratio for the temperature of IF–ZCA–DNN model in the error ranges of [− 3, 3], [− 5, 5], and [− 10, 10] were 77.9, 92.3, and 99.6 pct, respectively. This study will be beneficial to realize precise control of temperature of molten steel in LF-refining process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2021, copyright Taylor & Francis)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.Y. Yin: Iron Steel, 2021, vol. 56, pp. 4–9.

    Google Scholar 

  2. J. Li: LF Refining Technology, Metallurgical Industry Press, Beijing, 2012, pp. 135–36.

    Google Scholar 

  3. U. Camdali and M. Tunc: J. Iron Steel Res. Int., 2006, vol. 13, pp. 18–20.

    Article  CAS  Google Scholar 

  4. O. Volkova and D. Janke: ISIJ Int., 2003, vol. 43, pp. 1185–90.

    Article  CAS  Google Scholar 

  5. Y.J. Wu, Z.H. Jiang, M.F. Jiang, W. Gong, and D.P. Zhan: J. Iron Steel Res., 2002, vol. 14, pp. 9–12.

    CAS  Google Scholar 

  6. D.G. Hong, W.H. Han, and C.H. Yim: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 3833–45.

    Article  Google Scholar 

  7. W.J. Wang, L.F. Zhang, Y. Ren, Y. Luo, X.H. Sun, and W. Yang: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 1–7.

    Article  Google Scholar 

  8. W.J. Yang, L.J. Wang, W. Zhang, and J.M. Li: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 3124–35.

    Article  Google Scholar 

  9. C.A. Myers and T. Nakagaki: ISIJ Int., 2019, vol. 59, pp. 687–96.

    Article  CAS  Google Scholar 

  10. S.K. Thakur, A.K. Das, and B.K. Jha: Steel Res. Int., 2022, vol. 93, p. 2100479.

    Article  CAS  Google Scholar 

  11. S.H. Kwon, D.G. Hong, and C.H. Yim: Ironmak. Steelmak., 2020, vol. 47, pp. 1176–87.

    Article  CAS  Google Scholar 

  12. L.J. Yang, W.Q. Chen, P. Yu, L.C. Li, and L.G. Zhu: Iron Steel, 2000, vol. 35, pp. 13–16.

    CAS  Google Scholar 

  13. J. Li, D.F. He, A.J. Xu, and N.Y. Tian: Steelmaking, 2012, vol. 28, pp. 50–52.

    CAS  Google Scholar 

  14. X.L. Wang, H. Zhao, and Y.G. Sun: Metal. Ind. Autom., 2007, vol. 4, pp. 5–7.

    Google Scholar 

  15. Z.C. Xin, J.S. Zhang, J. Zheng, Y. Jin, and Q. Liu: ISIJ Int., 2022, vol. 62, pp. 532–41.

    Article  CAS  Google Scholar 

  16. K. Feng, D.F. He, A.J. Xu, and H.B. Wang: Steel Res. Int., 2016, vol. 87, pp. 79–86.

    Article  CAS  Google Scholar 

  17. H.Y. Tang, X.C. Guo, J.L. Wang, Y. Wang, and P.F. Cheng: Chin. J. Eng., 2016, vol. 38, pp. 139–45.

    Google Scholar 

  18. X.J. Wang: IEEE CAA J. Autom. Sin., 2017, vol. 4, pp. 770–74.

    Article  Google Scholar 

  19. G.Q. Fu, Q. Liu, Z. Wang, J. Chang, B. Wang, F.M. Xie, X.C. Lu, and Q.P. Ju: J. Univ. Sci. Technol. B, 2013, vol. 35, pp. 948–54.

    CAS  Google Scholar 

  20. W. Lv, Z.Z. Mao, and P. Yuan: J. Iron Steel Res. Int., 2012, vol. 19, pp. 21–28.

    Article  Google Scholar 

  21. W. Lv, Z.Z. Mao, and P. Yuan: Steel Res. Int., 2012, vol. 83, pp. 288–96.

    Article  CAS  Google Scholar 

  22. W. Lv, Z.Z. Mao, P. Yuan, and M.X. Jia: Steel Res. Int., 2014, vol. 85, pp. 405–14.

    Article  CAS  Google Scholar 

  23. F. He, A.J. Xu, H.B. Wang, D.F. He, and N.Y. Tian: Steel Res. Int., 2012, vol. 83, pp. 1079–86.

    Article  CAS  Google Scholar 

  24. N.K. Nath, N.K. Mandal, A.K. Singh, B. Basu, C. Bhanu, S. Kumar, and A. Ghosh: Ironmak. Steelmak., 2006, vol. 33, pp. 140–50.

    Article  CAS  Google Scholar 

  25. H.X. Tian, Z.Z. Mao, and Y. Wang: ISIJ Int., 2008, vol. 48, pp. 58–62.

    Article  CAS  Google Scholar 

  26. H.X. Tian, Z.Z. Mao, and A.N. Wang: ISIJ Int., 2009, vol. 49, pp. 58–63.

    Article  CAS  Google Scholar 

  27. H.X. Tian, Y.D. Liu, K. Li, R.R. Yang, and B. Meng: ISIJ Int., 2017, vol. 57, pp. 841–50.

    Article  CAS  Google Scholar 

  28. H.X. Tian, Z.Z. Mao, and Z. Zhao: Chin. J. Sci. Instrum., 2008, vol. 29, pp. 2658–62.

    Google Scholar 

  29. C. Chen, N. Wang, and M. Chen: ISIJ Int., 2021, vol. 61, pp. 1908–14.

    Article  CAS  Google Scholar 

  30. L.L. Zou, J.S. Zhang, Y.S. Han, F.Z. Zeng, Q.H. Li, and Q. Liu: Metals, 2021, vol. 11, pp. 1976–92.

    Article  CAS  Google Scholar 

  31. Z.C. Xin, J.S. Zhang, Y. Jin, J. Zheng, and Q. Liu: Int. J. Miner. Metall. Mater., 2023, vol. 30, pp. 335–44.

    Article  Google Scholar 

  32. K. Sano, S. Matsuda, S. Tohyama, D. Komura, and C. Sutoh: Sci. Rep., 2020, vol. 10, pp. 11714–22.

    Article  CAS  Google Scholar 

  33. G.Q. Huang, X.X. Zhao, and Q.Q. Lu: J. Saf. Environ., 2022, vol. 22, pp. 3412–23.

    Google Scholar 

  34. Q.S. Deng and G.P. Mei: in 2009 IEEE International Conference on Granular Computing (GRC 2009), China, 2009, pp. 126–31.

  35. F.T. Liu, K.M. Ting, and Z.H. Zhou: in 8th IEEE International Conference on Data Mining (IEEE, ICDM 2008), Pisa, Italy, 2008, pp. 413–22.

  36. Z.C. Xin, J.S. Zhang, J.G. Zhang, Y. Jin, J. Zheng, and Q. Liu: Ironmak. Steelmak., 2021, vol. 48, pp. 1123–32.

    Article  CAS  Google Scholar 

  37. J.D. Rodriguez, A. Perez, and J.A. Lozano: IEEE Trans. Pattern Anal. Mach. Intell., 2010, vol. 32, pp. 569–75.

    Article  Google Scholar 

  38. L.V.D. Maaten and G. Hinton: J. Mach. Learn. Res., 2008, vol. 9, pp. 2579–2605.

    Google Scholar 

  39. A.C. Belkina, C.O. Ciccolella, R. Anno, R. Halpert, J. Spidlen, and J.E.S. Cappione: Nat. Commun., 2019, vol. 10, pp. 5415–27.

    Article  Google Scholar 

  40. R.Z. Bian, J. Zhang, L. Zhou, P. Jiang, B.Q. Chen, and Y.H. Wang: J. Comput. Aided Des. Comput. Graph., 2021, vol. 33, pp. 1746–54.

    Google Scholar 

  41. K. Pearson: Philos. Trans. R. Soc. A, 1895, vol. 186, pp. 343–414.

    Google Scholar 

  42. F.T. Liu, K.M. Ting, and Z.H. Zhou: ACM Trans. Knowl. Discov. Data, 2012, vol. 6, pp. 1–39.

    Article  Google Scholar 

  43. K. Hornik, M. Stinchcombe, and H. White: Neural Netw., 1989, vol. 2, pp. 359–66.

    Article  Google Scholar 

  44. Y. Liu, Q. Zhao, W. Yao, X. Ma, and L. Liu: Sci. Rep., 2019, vol. 9, pp. 19751–63.

    Article  CAS  Google Scholar 

  45. S. Gouravaraju, J. Narayan, R.A. Sauer, and S.S. Gautam: J. Adhes., 2023, vol. 99, pp. 92–115.

    Article  CAS  Google Scholar 

  46. G.B. Huang, Q.Y. Zhu, and C.K. Siew: Neurocomputing, 2006, vol. 70, pp. 489–501.

    Article  Google Scholar 

  47. H.Z. Chen, J.P. Yang, X.C. Lu, X.Z. Yu, and Q. Liu: Chin. J. Eng., 2018, vol. 40, pp. 815–21.

    Google Scholar 

  48. J. Wang, S.Y. Lu, S.H. Wang, and Y.D. Zhang: Multimed. Tools Appl., 2022, vol. 81, pp. 41611–60.

    Article  Google Scholar 

  49. Z. Zhang, L.L. Cao, W.H. Lin, J.K. Sun, X.M. Feng, and Q. Liu: Chin. J. Eng., 2019, vol. 41, pp. 1052–60.

    CAS  Google Scholar 

  50. W.Y. Deng, Q.H. Zheng, and L. Chen: in 2009 IEEE Symposium on Computational Intelligence and Data Mining, (CIDM 2009), Nashville, TN, USA, 2009, pp. 389–95.

  51. Z.C. Xin, J.S. Zhang, W.H. Lin, J.G. Zhang, Y. Jin, J. Zheng, J.F. Cui, and Q. Liu: Ironmak. Steelmak., 2021, vol. 48, pp. 275–83.

    Article  CAS  Google Scholar 

  52. T.M. Cover and P.E. Hart: IEEE Trans. Inf. Theory, 1967, vol. 13, pp. 21–27.

    Article  Google Scholar 

  53. H. Peter: Machine Learning in Action, Manning Publications, Greenwich, 2012, pp. 15–25.

    Google Scholar 

  54. Y. LeCun, Y. Bengio, and G.E. Hinton: Nature, 2015, vol. 521, pp. 436–44.

    Article  CAS  Google Scholar 

  55. J.P. Yang, J.S. Zhang, W.D. Guo, S. Gao, and Q. Liu: ISIJ Int., 2021, vol. 61, pp. 2100–110.

    Article  CAS  Google Scholar 

  56. H.X. Yang, J.H. Liu, H.W. Sun, and H.G. Zhang: IEEE Access, 2020, vol. 8, pp. 112805–13.

    Article  Google Scholar 

  57. L.S. Shapley: A value for n-person games, Princeton University Press, Princeton, NJ, 1953, pp. 307–17.

    Google Scholar 

  58. P. Giudici and E. Raffinetti: Qual. Reliab. Eng. Int., 2022, vol. 38, pp. 1318–26.

    Article  Google Scholar 

  59. J. Bae, Y.R. Li, N. Stahl, G. Mathiason, and N. Kojola: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 1632–45.

    Article  Google Scholar 

  60. J. Nickolls and W.J. Dally: IEEE Micro, 2010, vol. 30, pp. 56–69.

    Article  Google Scholar 

  61. J. Prakash, U. Agarwal, and P.K. Yalavarthy: Sci. Rep., 2021, vol. 11, pp. 18536–45.

    Article  CAS  Google Scholar 

  62. J. Schmidhuber: Neural Netw., 2015, vol. 61, pp. 85–117.

    Article  Google Scholar 

Download references

Acknowledgments

This project is funded by the National Natural Science Foundation of China, under Grant Number 51974023, and the funding of State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, under Grant Number 41621005.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiang-shan Zhang or Qing Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, Zc., Zhang, Js., Zhang, Jg. et al. Predicting Temperature of Molten Steel in LF-Refining Process Using IF–ZCA–DNN Model. Metall Mater Trans B 54, 1181–1194 (2023). https://doi.org/10.1007/s11663-023-02753-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02753-0

Navigation